A complete set of all optical phonon modes predicted by symmetry for bixbyite structure indium oxide is reported here from a combination of far-infrared and infrared spectroscopic ellipsometry, as well as first principles calculations. Dielectric function spectra measured on high quality, marginally electrically conductive melt grown single bulk crystals are obtained on a wavelength-by-wavelength (also known as point-by-point) basis and by numerical reduction of a subtle free charge carrier Drude model contribution. A four-parameter semi-quantum model is applied to determine all 16 pairs of infrared-active transverse and longitudinal optical phonon modes, including the high-frequency dielectric constant, ε=4.05±0.05. The Lyddane–Sachs–Teller relation then gives access to the static dielectric constant, εDC=10.55±0.07. All experimental results are in excellent agreement with our density functional theory calculations and with previously reported values, where existent. We also perform optical Hall effect measurements and determine for the unintentionally doped n-type sample a free electron density of n=(2.81±0.01)×1017cm3, a mobility of μ=(112±3)cm2/(Vs), and an effective mass parameter of (0.208±0.006)me. Density and mobility parameters compare very well with the results of electrical Hall effect measurements. Our effective mass parameter, which is measured independently of any other experimental technique, represents the bottom curvature of the Γ point in In2O3 in agreement with previous extrapolations. We use terahertz spectroscopic ellipsometry to measure the quasi-static response of In2O3, and our model validates the static dielectric constant obtained from the Lyddane–Sachs–Teller relation.

1.
P. D. C.
King
,
T. D.
Veal
,
F.
Fuchs
,
C. Y.
Wang
,
D. J.
Payne
,
A.
Bourlange
,
H.
Zhang
,
G. R.
Bell
,
V.
Cimalla
,
O.
Ambacher
,
R. G.
Egdell
,
F.
Bechstedt
, and
C. F.
McConville
,
Phys. Rev. B
79
,
205211
(
2009
).
2.
R.
Bel Hadj Tahar
,
T.
Ban
,
Y.
Ohya
, and
Y.
Takahashi
,
J. Appl. Phys.
83
,
2631
(
1998
).
3.
Y.
Shigesato
,
S.
Takaki
, and
T.
Haranoh
,
J. Appl. Phys.
71
,
3356
(
1992
).
4.
O.
Bierwagen
and
J. S.
Speck
,
Phys. Status Solidi A
211
,
48
(
2014
).
5.
T.
Minami
,
Semicond. Sci. Technol.
20
,
S35
(
2005
).
6.
C.
Lungenschmied
,
G.
Dennler
,
H.
Neugebauer
,
S. N.
Sariciftci
,
M.
Glatthaar
,
T.
Meyer
, and
A.
Meyer
,
Sol. Energy Mater. Sol. Cells
91
,
379
(
2007
).
7.
A. S. A. C.
Diniz
,
Renew. Energy
36
,
1153
(
2011
).
8.
S. I.
Kim
,
S. H.
Cho
,
S. R.
Choi
,
M. C.
Oh
,
J. H.
Jang
, and
P. K.
Song
,
Thin Solid Films
517
,
4061
(
2009
).
9.
M.
Bartic
,
C.-I.
Baban
,
H.
Suzuki
,
M.
Ogita
, and
M.
Isai
,
J. Am. Ceram. Soc.
90
,
2879
(
2007
).
10.
A.
Tischner
,
T.
Maier
,
C.
Stepper
, and
A.
Köck
,
Sens. Actuators, B
134
,
796
(
2008
).
11.
S.
Kannan
,
H.
Steinebach
,
L.
Rieth
, and
F.
Solzbacher
,
Sens. Actuators, B
148
,
126
(
2010
).
12.
P.
Nguyen
,
H. T.
Ng
,
T.
Yamada
,
M. K.
Smith
,
J.
Li
,
J.
Han
, and
M.
Meyyappan
,
Nano Lett.
4
,
651
(
2004
).
13.
P. K.
Nayak
,
M. N.
Hedhili
,
D.
Cha
, and
H. N.
Alshareef
,
Appl. Phys. Lett.
103
,
033518
(
2013
).
14.
S.-Y.
Han
,
G. S.
Herman
, and
C.-H.
Chang
,
J. Am. Chem. Soc.
133
,
5166
(
2011
).
15.
Y. G.
Kim
,
T.
Kim
,
C.
Avis
,
S.
Lee
, and
J.
Jang
,
IEEE Trans. Electron Devices
63
,
1078
(
2016
).
16.
J. K.
Sheu
,
Y. K.
Su
,
G. C.
Chi
,
M. J.
Jou
, and
C. M.
Chang
,
Appl. Phys. Lett.
72
,
3317
(
1998
).
17.
J.
Zhang
,
Y.
Li
,
B.
Zhang
,
H.
Wang
,
Q.
Xin
, and
A.
Song
,
Nat. Commun.
6
,
7561
(
2015
).
18.
Z. P.
Wei
,
D. L.
Guo
,
B.
Liu
,
R.
Chen
,
L. M.
Wong
,
W. F.
Yang
,
S. J.
Wang
,
H. D.
Sun
, and
T.
Wu
,
Appl. Phys. Lett.
96
,
031902
(
2010
).
19.
J.
Gao
,
R.
Chen
,
D. H.
Li
,
L.
Jiang
,
J. C.
Ye
,
X. C.
Ma
,
X. D.
Chen
,
Q. H.
Xiong
,
H. D.
Sun
, and
T.
Wu
,
Nanotechnology
22
,
195706
(
2011
).
20.
H.
Ouacha
,
U.
Kleineberg
, and
H.
Albrithen
,
J. Phys. D: Appl. Phys.
50
,
455102
(
2017
).
21.
L.-C.
Chen
,
C.-H.
Tien
, and
W.-C.
Liao
,
J. Phys. D: Appl. Phys.
44
,
165101
(
2011
).
22.
T.
Nagata
, in Single Crystals of Electronic Materials, Woodhead Publishing Series in Electronic and Optical Materials, edited by R. Fornari (Woodhead Publishing, 2019), pp. 523–546.
23.
O.
Bierwagen
,
Semicond. Sci. Technol.
30
,
024001
(
2015
).
24.
F.
Yang
,
J.
Ma
,
X.
Feng
, and
L.
Kong
,
J. Cryst. Growth
310
,
4054
(
2008
).
25.
M. R.
Karim
,
Z.
Feng
, and
H.
Zhao
,
Cryst. Growth Des.
18
,
4495
(
2018
).
26.
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
D.
Schulz
,
D.
Klimm
,
M.
Albrecht
,
M.
Pietsch
,
S.
Ganschow
,
A.
Kwasniewski
, and
R.
Fornari
,
J. Cryst. Growth
362
,
349
(
2013
).
27.
S.
Sadofev
,
Y.
Cho
,
O.
Brandt
,
M.
Ramsteiner
,
R.
Calarco
,
H.
Riechert
,
S. C.
Erwin
,
Z.
Galazka
,
M.
Korytov
,
M.
Albrecht
,
R.
Uecker
, and
R.
Fornari
,
Appl. Phys. Lett.
101
,
172102
(
2012
).
28.
L.
Liu
,
S.
Chen
,
X.
Liang
, and
Y.
Pei
,
Adv. Electron. Mater.
5
,
1900550
(
2019
).
29.
M.
Feneberg
,
J.
Nixdorf
,
C.
Lidig
,
R.
Goldhahn
,
Z.
Galazka
,
O.
Bierwagen
, and
J. S.
Speck
,
Phys. Rev. B
93
,
045203
(
2016
).
30.
J.
De Wit
,
J.
Van Der Bom
, and
J.
De Groot
,
J. Solid State Chem.
25
,
101
(
1978
).
31.
N.
Preissler
,
O.
Bierwagen
,
A. T.
Ramu
, and
J. S.
Speck
,
Phys. Rev. B
88
,
085305
(
2013
).
32.
R. L.
Weiher
,
J. Appl. Phys.
33
,
2834
(
1962
).
33.
K. H. L.
Zhang
,
R. G.
Egdell
,
F.
Offi
,
S.
Iacobucci
,
L.
Petaccia
,
S.
Gorovikov
, and
P. D. C.
King
,
Phys. Rev. Lett.
110
,
056803
(
2013
).
34.
V.
Scherer
,
C.
Janowitz
,
A.
Krapf
,
H.
Dwelk
,
D.
Braun
, and
R.
Manzke
,
Appl. Phys. Lett.
100
,
212108
(
2012
).
35.
K. H. L.
Zhang
,
V. K.
Lazarov
,
T. D.
Veal
,
F. E.
Oropeza
,
C. F.
McConville
,
R. G.
Egdell
, and
A.
Walsh
,
J. Phys.: Condens. Matter
23
,
334211
(
2011
).
36.
H.
Peelaers
,
E.
Kioupakis
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
115
,
082105
(
2019
).
37.
S. Z.
Karazhanov
,
P.
Ravindran
,
P.
Vajeeston
,
A.
Ulyashin
,
T. G.
Finstad
, and
H.
Fjellvåg
,
Phys. Rev. B
76
,
075129
(
2007
).
38.
F.
Fuchs
and
F.
Bechstedt
,
Phys. Rev. B
77
,
155107
(
2008
).
39.
H.
Odaka
,
S.
Iwata
,
N.
Taga
,
S.
Ohnishi
,
Y.
Kaneta
, and
Y.
Shigesato
,
Jpn. J. Appl. Phys.
36
,
5551
(
1997
).
40.
S. H.
Brewer
and
S.
Franzen
,
Chem. Phys.
300
,
285
(
2004
).
41.
T.
Hofmann
,
V.
Darakchieva
,
B.
Monemar
,
H.
Lu
,
W.
Schaff
, and
M.
Schubert
,
J. Electron. Mater.
37
,
611
(
2008
).
42.
A.
Kasic
,
M.
Schubert
,
S.
Einfeldt
,
D.
Hommel
, and
T. E.
Tiwald
,
Phys. Rev. B
62
,
7365
(
2000
).
43.
Z.
Galazka
,
K.
Irmscher
,
M.
Pietsch
,
T.
Schulz
,
R.
Uecker
,
D.
Klimm
, and
R.
Fornari
,
CrystEngComm
15
,
2220
(
2013
).
44.
Z.
Galazka
,
R.
Uecker
, and
R.
Fornari
,
J. Cryst. Growth
388
,
61
(
2014
).
45.
V.
Darakchieva
,
T.
Hofmann
,
M.
Schubert
,
B.
Sernelius
,
B.
Monemar
,
P.
Persson
,
F.
Giuliani
,
E.
Alves
,
H.
Lu
, and
W.
Schaff
,
Appl. Phys. Lett.
94
,
022109
(
2009
).
46.
T.
Nagata
,
O.
Bierwagen
,
Z.
Galazka
,
M.
Imura
,
S.
Ueda
,
H.
Yoshikawa
,
Y.
Yamashita
, and
T.
Chikyow
,
Appl. Phys. Express
10
,
011102
(
2016
).
47.
T.
Nagata
,
O.
Bierwagen
,
Z.
Galazka
,
M.
Imura
,
S.
Ueda
,
Y.
Yamashita
, and
T.
Chikyow
,
Jpn. J. Appl. Phys.
58
,
SDDG06
(
2019
).
48.
A.
Walsh
,
Appl. Phys. Lett.
98
,
261910
(
2011
).
49.
V.
Scherer
,
C.
Janowitz
,
Z.
Galazka
,
M.
Nazarzadehmoafi
, and
R.
Manzke
,
Europhys. Lett.
113
,
26003
(
2016
).
50.
W. B.
White
and
V. G.
Keramidas
,
Spectrochim. Acta, Part A
28
,
501
(
1972
).
51.
I.
Hamberg
and
C. G.
Granqvist
,
J. Appl. Phys.
60
,
R123
R160
(
1986
).
52.
H.
Sobotta
,
H.
Neumann
,
G.
Kühn
, and
V.
Riede
,
Cryst. Res. Technol.
25
,
61
(
1990
).
53.
B.
Garcia-Domene
,
H. M.
Ortiz
,
O.
Gomis
,
J. A.
Sans
,
F. J.
Manjón
,
A.
Muñoz
,
P.
Rodríguez-Hernández
,
S. N.
Achary
,
D.
Errandonea
,
D.
Martínez-García
,
A. H.
Romero
,
A.
Singhal
, and
A. K.
Tyagi
,
J. Appl. Phys.
112
,
123511
(
2012
).
54.
C.
Kranert
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
Phys. Status Solidi RRL
8
,
554
(
2014
).
55.
A.
Fiedler
,
R.
Schewski
,
Z.
Galazka
, and
K.
Irmscher
,
ECS J. Solid State Sci. Technol.
8
,
Q3083
(
2019
).
56.
A.
Walsh
,
C. R. A.
Catlow
,
A. A.
Sokol
, and
S. M.
Woodley
,
Chem. Mater.
21
,
4962
(
2009
).
57.
R. H.
Lyddane
,
R.
Sachs
, and
E.
Teller
,
Phys. Rev.
59
,
673
(
1941
).
58.
Quantum ESPRESSO is available from http://www.quantum-espresso.org. See also P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch,
J. Phys.: Condens. Matter
21, 395502 (2009).
59.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
60.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
98
,
079904
(
2018
).
61.
M. J.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G. M.
Rignanese
,
Comput. Phys. Commun.
226
,
39
(
2018
).
62.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
,
APL Mater.
1
,
011002
(
2013
).
63.
Materials Data on In2O3 by Materials Project. doi:10.17188/1198812
64.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
65.
S.
Baroni
,
S.
de Gironcoli
,
A. D.
Corso
,
S.
Baroni
,
S.
de Gironcoli
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
66.
A.
Kokalj
,
J. Mol. Graphics Modell.
17
,
176
179
(
1999
).
67.
M.
Schubert
,
P.
Kuehne
,
V.
Darakchieva
, and
T.
Hofmann
,
J. Opt. Soc. Am. A
33
,
1553
(
2016
).
68.
F.
Gervais
and
B.
Piriou
,
J. Phys. C: Solid State Phys.
7
,
2374
(
1974
).
69.
M.
Schubert
, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons and Polaritons, Springer Tracts in Modern Physics Vol. 209 (Springer, Berlin, 2004).
70.
H.
Fujiwara
,
Spectroscopic Ellipsometry
(
John Wiley & Sons
,
New York
,
2007
).
71.
P.
Kühne
,
C. M.
Herzinger
,
M.
Schubert
,
J. A.
Woollam
, and
T.
Hofmann
,
Rev. Sci. Instrum.
85
,
071301
(
2014
).
72.
N.
Armakavicius
,
J.-T.
Chen
,
T.
Hofmann
,
S.
Knight
,
P.
Kühne
,
D.
Nilsson
,
U.
Forsberg
,
E.
Janzén
, and
V.
Darakchieva
,
Phys. Status Solidi C
13
,
369
(
2016
).
73.
P.
Gopalan
,
S.
Knight
,
A.
Chanana
,
M.
Stokey
,
P.
Ranga
,
M. A.
Scarpulla
,
S.
Krishnamoorthy
,
V.
Darakchieva
,
Z.
Galazka
,
K.
Irmscher
,
A.
Fiedler
,
S.
Blair
,
M.
Schubert
, and
B.
Sensale-Rodriguez
,
Appl. Phys. Lett.
117
,
252103
(
2020
).
You do not currently have access to this content.