This work reports average electron temperature (Te) and electron density (ne) of an atmospheric argon rotating gliding arc (RGA), operated in glow-type mode, under transitional and turbulent flows. Both Te and ne were calculated near the shortest (δ) and longest (Δ) gap between the electrodes, by two different methods using two separate measurements: (1) optical emission spectroscopy (OES) and (2) physical–electrical. Te calculated from (a) collisional radiative model (CRM) (OES) and (b) BOLSIG+ [physical–electrical, reduced electric field (ENo) as input], differed each other by 16%–26% at δ and 6% at Δ. Te was maximum at δ (>2 eV) and minimum near Δ (1.6–1.7 eV). Similarly, the ENo was maximum near the δ (5–8 Td) and minimum near Δ, reaching an asymptotic value (1 Td). By benchmarking Te from CRM, the expected ENo near δ was corrected to 3 Td. The calculated CRM intensity agreed well with that of the measured for most of the emission lines indicating a well optimized model. The average ne near δ and Δ from Stark broadening (OES) was 4.8–8.0×1021m3, which is an order higher than the ne calculated through current density (physical–electrical). Te and ne were not affected by gas flow, attributed to the glow-type mode operation. To the best of authors’ knowledge, this work reports for the first time (a) an optimized CRM for RGAs (fine-structure resolved), (b) the poly-diagnostic approach to estimate plasma parameters, and (c) the validation of ENo calculated using physical–electrical measurements.

1.
S. Y.
Lu
,
X. M.
Sun
,
X. D.
Li
,
J. H.
Yan
, and
C. M.
Du
,
Phys. Plasmas
19
,
072122
(
2012
).
2.
R.
Snoeckx
and
A.
Bogaerts
,
Chem. Soc. Rev.
46
,
5805
5863
(
2017
).
3.
J. M.
del Campo
,
S.
Coulombe
, and
J.
Kopyscinski
,
Plasma Chem. Plasma Process.
40
,
857
881
(
2020
).
4.
G.
Trenchev
and
A.
Bogaerts
, J. CO2 Utilization 
39
,
101152
(
2020
).
5.
R.
Xu
,
F.
Zhu
,
H.
Zhang
,
P. M.
Ruya
,
X.
Kong
,
L.
Li
, and
X.
Li
,
Energy Fuels
34
,
2045
2054
(
2020
).
6.
R.
Feng
,
J.
Zhu
,
Z.
Wang
,
M.
Sun
,
H.
Wang
,
Z.
Cai
, and
W.
Yan
,
Acta Astronaut.
171
,
238
244
(
2020
).
7.
J.
Pawłat
,
P.
Terebun
,
M.
Kwiatkowski
,
B.
Tarabová
,
Z.
Koval̆ová
,
K.
Kuc̆erová
,
Z.
Machala
,
M.
Janda
, and
K.
Hensel
,
Plasma Chem. Plasma Process.
39
,
627
642
(
2019
).
8.
J.
Ananthanarasimhan
,
R.
Lakshminarayana
,
M. S.
Anand
, and
S.
Dasappa
,
Plasma Sources Sci. Technol.
28
,
085012
(
2019
).
9.
X.
Tu
and
J. C.
Whitehead
,
Int. J. Hydrogen Energy
39
,
9658
9669
(
2014
).
10.
H.
Zhang
,
L.
Li
,
X.
Li
,
W.
Wang
,
J.
Yan
, and
X.
Tu
, J. CO2 Utilization 
27
,
472
479
(
2018
).
11.
Z.
Sun
,
J. J.
Zhu
,
Z.
Li
,
M.
Aldén
,
F.
Leipold
,
M.
Salewski
, and
Y.
Kusano
,
Opt. Express
21
,
6028
(
2013
).
12.
C. S.
Kalra
,
Y. I.
Cho
,
A.
Gutsol
,
A.
Fridman
, and
T. S.
Rufael
,
Rev. Sci. Instrum.
76
,
025110
(
2005
).
13.
D.
Lee
,
K. T.
Kim
,
M.
Cha
, and
Y. H.
Song
,
Proc. Combust. Inst.
31
,
3343
3351
(
2007
).
14.
L.
Yu
,
J. H.
Yan
,
X.
Tu
,
M. J.
Ni
,
Y.
Chi
,
X. D.
Li
, and
S. Y.
Lu
,
IEEE Trans. Plasma Sci.
39
,
2832
2833
(
2011
).
15.
X.
Guofeng
and
D.
Xinwei
,
IEEE Trans. Plasma Sci.
40
,
3458
3464
(
2012
).
16.
Y.
Ren
,
X.
Li
,
S.
Lu
, and
J.
Yan
,
IEEE Trans. Plasma Sci.
42
,
2702
2703
(
2014
).
17.
A. F.
Bublievsky
,
J. C.
Sagas
,
A. V.
Gorbunov
,
H. S.
Maciel
,
D. A.
Bublievsky
,
G. P.
Filho
,
P. T.
Lacava
,
A. A.
Halinouski
, and
G. E.
Testoni
,
IEEE Trans. Plasma Sci.
43
,
1742
1746
(
2015
).
18.
M.
McNall
and
S.
Coulombe
,
J. Phys. D: Appl. Phys.
51
,
445203
(
2018
).
19.
H.
Zhang
,
F.
Zhu
,
X.
Li
, and
C.
Du
,
Plasma Sci. Technol.
19
,
045401
(
2017
).
20.
H.
Zhang
,
D.
Li X
,
Y. Q.
Zhang
,
T.
Chen
,
J. H.
Yan
, and
C. M.
Du
,
IEEE Trans. Plasma Sci.
40
,
3493
3498
(
2012
).
21.
T. L.
Zhao
,
J. L.
Liu
,
X. S.
Li
,
J. B.
Liu
,
Y. H.
Song
,
Y.
Xu
, and
A. M.
Zhu
,
Phys. Plasmas
21
,
053507
(
2014
).
22.
A. J.
Wu
,
H.
Zhang
,
X. D.
Li
,
S. Y.
Lu
,
C. M.
Du
, and
J. H.
Yan
,
IEEE Trans. Plasma Sci.
43
,
836
845
(
2015
).
23.
M.
Ramakers
,
J. A.
Medrano
,
G.
Trenchev
,
F.
Gallucci
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
26
,
125002
(
2017
).
24.
P. J.
Bruggeman
,
F.
Iza
, and
R.
Brandenburg
,
Plasma Sources Sci. Technol.
26
,
123002
(
2017
).
25.
R. B.
Patel
,
C.
Oommen
, and
M. J.
Thomas
,
J. Propul. Power
36
,
235
247
(
2020
).
26.
D. I.
Slovetsky
,
Pure Appl. Chem.
62
,
1729
1742
(
1990
).
27.
Y.
Ju
and
W.
Sun
,
Prog. Energy Combust. Sci.
48
,
21
83
(
2015
).
28.
T.
Belmonte
,
C.
Noël
,
T.
Gries
,
J.
Martin
, and
G.
Henrion
,
Plasma Sources Sci. Technol.
24
,
064003
(
2015
).
29.
S. G.
Belostotskiy
,
T.
Ouk
,
V. M.
Donnelly
,
D. J.
Economou
, and
N.
Sadeghi
,
J. Appl. Phys.
107
,
053305
(
2010
).
30.
A. Y.
Nikiforov
,
C.
Leys
,
M. A.
Gonzalez
, and
J. L.
Walsh
,
Plasma Sources Sci. Technol.
24
,
034001
(
2015
).
31.
S. S.
Baghel
,
S.
Gupta
,
R. K.
Gangwar
, and
R.
Srivastava
,
Plasma Sources Sci. Technol.
28
,
115010
(
2019
).
32.
A.
Durocher-Jean
,
E.
Desjardins
, and
L.
Stafford
,
Phys. Plasmas
26
,
063516
(
2019
).
33.
X. M.
Zhu
and
Y. K.
Pu
,
J. Phys. D: Appl. Phys.
40
,
2533
2538
(
2007
).
34.
R. K.
Gangwar
,
L.
Sharma
,
R.
Srivastava
, and
A. D.
Stauffer
,
J. Appl. Phys.
111
,
053307
(
2012
).
35.
R.
Engeln
,
B.
Klarenaar
, and
O.
Guaitella
,
Plasma Sources Sci. Technol.
29
,
063001
(
2020
).
36.
H. J.
Kunze
,
Introduction to Plasma Spectroscopy
, Springer Series on Atomic, Optical, and Plasma Physics Vol. 56 (
Springer
,
Berlin
,
2009
).
37.
K.
Sasaki
,
R.
Engeln
, and
E. V.
Barnat
,
J. Phys. D: Appl. Phys.
51
,
040202
(
2018
).
38.
R.
Peverall
and
G. A. D.
Ritchie
,
Plasma Sources Sci. Technol.
28
,
073002
(
2019
).
39.
S.
Gröger
,
M.
Ramakers
,
M.
Hamme
,
J. A.
Medrano
,
N.
Bibinov
,
F.
Gallucci
,
A.
Bogaerts
, and
P.
Awakowicz
,
J. Phys. D: Appl. Phys.
52
,
065201
(
2019
).
40.
S. P.
Gangoli
, “Design and preliminary characterization of the magnetically stabilized gliding arc discharge,” Master’s thesis (Drexel University, 2007).
41.
C.
Kong
,
J.
Gao
,
J.
Zhu
,
A.
Ehn
,
M.
Aldén
, and
Z.
Li
,
Phys. Plasmas
24
,
093515
(
2017
).
42.
J.
Ananthanarasimhan
,
A. M.
Shivapuji
,
P.
Leelesh
, and
L.
Rao
,
IEEE Trans. Plasma Sci.
49
,
502
506
(
2021
).
43.
C.
Kong
,
J.
Gao
,
J.
Zhu
,
A.
Ehn
,
M.
Aldén
, and
Z.
Li
,
J. Appl. Phys.
123
,
223302
(
2018
).
44.
J.
Zhu
,
J.
Gao
,
Z.
Li
,
A.
Ehn
,
M.
Aldén
,
A.
Larsson
, and
Y.
Kusano
,
Appl. Phys. Lett.
105
,
234102
(
2014
).
45.
Y.
Xia
,
N.
Lu
,
B.
Wang
,
J.
Li
,
K.
Shang
,
N.
Jiang
, and
Y.
Wu
,
Int. J. Hydrogen Energy
42
,
22776
22785
(
2017
).
46.
A.
von Keudell
and
V.
Schulz-von der Gathen
,
Plasma Sources Sci. Technol.
26
,
113001
(
2017
).
47.
H.
Conrads
and
M.
Schmidt
,
Plasma Sources Sci. Technol.
9
,
441
454
(
2000
).
48.
H.
Griem
,
Spectral Line Broadening by Plasmas
(
Academic Press
,
New York
,
1974
).
49.
A.
Bogaerts
,
R.
Gijbels
, and
J.
Vlcek
,
J. Appl. Phys.
84
,
121
136
(
1998
).
50.
B. D.
Van Sijde
,
J. J. A.
van der Mullen
, and
D. C.
Schram
,
Beitr. Plasmaphys.
24
,
447
473
(
1984
).
51.
F. P.
Sainct
,
A.
Durocher-Jean
,
R. K.
Gangwar
,
N. Y.
Mendoza Gonzalez
,
S.
Coulombe
, and
L.
Stafford
,
Plasma
3
,
38
53
(
2020
).
52.
S.
Gupta
,
R. K.
Gangwar
, and
R.
Srivastava
,
Plasma Sources Sci. Technol.
28
,
095009
(
2019
).
53.
Priti
,
R. K.
Gangwar
, and
R.
Srivastava
,
Plasma Sources Sci. Technol.
28
,
025003
(
2019
).
54.
R. K.
Gangwar
,
O.
Levasseur
,
N.
Naudé
,
N.
Gherardi
,
F.
Massines
,
J.
Margot
, and
L.
Stafford
,
Plasma Sources Sci. Technol.
25
,
015011
(
2016
).
55.
Dipti
,
R. K.
Gangwar
,
R.
Srivastava
, and
A. D.
Stauffer
,
Eur. Phys. J. D
67
,
203
(
2013
).
56.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
733
(
2005
).
57.
J.
Ananthanarasimhan
,
P.
Leelesh
,
M. S.
Anand
, and
R.
Lakshminarayana
,
Plasma Res. Express
2
,
035008
(
2020
).
58.
S.
Kolev
and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
24
,
065023
(
2015
).
59.
V.
Anand
,
A.
Nair
,
A.
Karur Karunapathy Nagendirakumar
, and
M. R.
Gowravaram
,
J. Vac. Sci. Technol., A
36
,
04407
(
2018
).
60.
S.
Pellerin
,
K.
Musiol
,
B.
Pokrzywka
, and
J.
Chapelle
,
J. Phys. B: At. Mol. Opt. Phys.
29
,
3911
3924
(
1996
).
61.
R.
Konjević
and
N.
Konjević
,
Spectrochim. Acta, Part B
52
,
2077
2084
(
1997
).
62.
C.
Lee
,
D.
Camm
, and
G.
Copley
,
J. Quant. Spectrosc. Radiat. Transfer
15
,
211
216
(
1975
).
63.
L.
Dong
,
J.
Ran
, and
Z.
Mao
,
Appl. Phys. Lett.
86
,
161501
(
2005
).
64.
Origin(Pro) 2020, OriginLab Corporation, Northampton, MA, USA.
66.
J. B.
Boffard
,
R. O.
Jung
,
C. C.
Lin
, and
A. E.
Wendt
,
Plasma Sources Sci. Technol.
18
,
035017
(
2009
).
67.
R. K.
Gangwar
,
L.
Sharma
,
R.
Srivastava
, and
A. D.
Stauffer
,
Phys. Rev. A
81
,
052707
(
2010
).
68.
R. K.
Gangwar
,
L.
Sharma
,
R.
Srivastava
, and
A. D.
Stauffer
,
Phys. Rev. A
82
,
032710
(
2010
).
69.
R. K.
Gangwar
,
Dipti
,
R.
Srivastava
, and
L.
Stafford
,
Plasma Sources Sci. Technol.
25
,
035025
(
2016
).
70.
G.
Shivkumar
,
M. A.
Alrefae
,
S. S.
Tholeti
,
S. O.
Macheret
,
T. S.
Fisher
, and
A. A.
Alexeenko
,
J. Appl. Phys.
125
,
223301
(
2019
).
71.
K.
Shimamura
and
J.
Yang
,
Jpn. J. Appl. Phys.
59
,
056001
(
2020
).
72.
Y.
Zhu
,
N. D.
Lepikhin
,
I. S.
Orel
,
A.
Salmon
,
A. V.
Klochko
, and
S. M.
Starikovskaia
,
Plasma Sources Sci. Technol.
27
,
075020
(
2018
).
73.
J. E.
Chilton
,
J. B.
Boffard
,
R. S.
Schappe
, and
C. C.
Lin
,
Phys. Rev. A
57
,
267
277
(
1998
).
74.
V. M.
Donnelly
,
J. Phys. D: Appl. Phys.
37
,
R217
R236
(
2004
).
75.
J. B.
Boffard
,
R. O.
Jung
,
C. C.
Lin
, and
A. E.
Wendt
,
Plasma Sources Sci. Technol.
19
,
065001
(
2010
).
76.
A.
Hartgers
,
J.
van Dijk
,
J.
Jonkers
, and
J.
van der Mullen
,
Comput. Phys. Commun.
135
,
199
218
(
2001
).
77.
T. D.
Nguyen
and
N.
Sadeghi
,
Phys. Rev. A
18
,
1388
1395
(
1978
).
78.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD
Team
, NIST Atomic Spectra Database (version 5.7.1) (2019), see http://www.nist.gov/pml/data/asd.cfm.
79.
R. S. F.
Chang
and
D. W.
Setser
,
J. Chem. Phys.
69
,
3885
3897
(
1978
).
80.
G.
Inoue
,
D. W.
Setser
, and
N.
Sadeghi
,
J. Chem. Phys.
76
,
977
983
(
1982
).
81.
M. V.
Malyshev
and
V. M.
Donnelly
,
Phys. Rev. E
60
,
6016
6029
(
1999
).
82.
S.
Kolev
and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
27
,
125011
(
2018
).
83.
Y. D.
Korolev
,
O. B.
Frants
,
V. G.
Geyman
,
N. V.
Landl
, and
V. S.
Kasyanov
,
IEEE Trans. Plasma Sci.
39
,
3319
3325
(
2011
).
84.
V. Y.
Kozhevnikov
,
A. V.
Kozyrev
, and
Y. D.
Korolev
,
Plasma Phys. Rep.
32
,
949
959
(
2006
).
85.
J.
Zhu
,
J.
Gao
,
A.
Ehn
,
M.
Aldén
,
Z.
Li
,
D.
Moseev
,
Y.
Kusano
,
M.
Salewski
,
A.
Alpers
,
P.
Gritzmann
, and
M.
Schwenk
,
Appl. Phys. Lett.
106
,
044101
(
2015
).
86.
X.
Tu
,
H. J.
Gallon
, and
J. C.
Whitehead
,
IEEE Trans. Plasma Sci.
39
,
2900
2901
(
2011
).
87.
X. M.
Zhu
,
Z. W.
Cheng
,
E.
Carbone
,
Y. K.
Pu
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
25
,
043003
(
2016
).
88.
S. R.
Sun
,
S.
Kolev
,
H. X.
Wang
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
26
,
055017
(
2017
).
89.
D.
Staack
,
B.
Farouk
,
A.
Gutsol
, and
A.
Fridman
,
Plasma Sources Sci. Technol.
14
,
700
711
(
2005
).
90.
S. P.
Gangoli
,
A. F.
Gutsol
, and
A. A.
Fridman
,
Plasma Sources Sci. Technol.
19
,
065004
(
2010
).
91.
G.
Elaragi
,
J. Adv. Phys.
7
,
1316
1323
(
2015
).
92.
A.
Fridman
,
Plasma Physics and Engineering
, 1st ed. (
CRC Press
,
2004
).
93.
D.
Staack
,
B.
Farouk
,
A. F.
Gutsol
, and
A. A.
Fridman
,
Plasma Sources Sci. Technol.
15
,
818
827
(
2006
).

Supplementary Material

You do not currently have access to this content.