We present an efficient technique to use the periodic method of moments (PMOM) in analyzing the plasmonic nano-antenna gratings (PNAGs) on natural/artificial anisotropic thin films. The artificial media are made up of two alternating isotropic regions in which the optic axis is chosen to be parallel to the period of grating due to its more complicated analysis. Dyadic Green's function (DGF) of these structures is obtained by utilizing the equivalent model of transmission line in Fourier domain and considering the plasmonic effects. Such a DGF is used in a series equation formulated for computing the effective electric currents induced on PNAG's surface. Solving such a series equation is carried out using Galerkin's version of PMOM with appropriate sub-domain functions. Using this technique, the scattering characteristics of different examples of double-screen PNAGs with homogeneous natural/inhomogeneous artificial anisotropic thin films are calculated. Assessment of this technique's efficiency is carried out by taking its cost–time and convergence rate vs truncation orders into account. It is shown that by using the developed technique, not only PNAGs with natural/artificial dielectrics can be analyzed within short time but also CPU and memory occupancies are reduced in comparison with commercial Electromagnetic (EM)-solvers.

1.
T. K.
Wu
,
Frequency Selective Surface and Grid Array
(
Wiley
,
New York
,
1995
).
2.
J.
Huang
and
J. A.
Encinar
,
Reflectarray Antennas
(
Wiley Online Library
,
Hoboken
,
NJ
,
2008
).
3.
M.
Rafaei-Booket
,
Z.
Atlasbaf
, and
M.
Shahabadi
,
IEEE Trans. Antennas Propagat.
64
,
3711
(
2016
).
4.
M.
Rafaei-Booket
,
Z.
Atlasbaf
, and
M.
Shahabadi
, in 8th International Symposium on Telecommunications (IST), Tehran, Iran, 27–28 September 2016 (IEEE, Tehran, 2017), pp. 419–423.
5.
N.
Yu
and
F.
Capasso
,
J. Lightwave Technol.
33
,
2344
(
2015
).
6.
D.
Neshev
and
I.
Aharonovich
,
Light Sci. Appl.
7
,
58
(
2018
).
7.
F. A. A.
Nugroho
,
D.
Albinsson
,
T. J.
Antosiewicz
, and
C.
Langhammer
,
ACS Nano
14
,
2345
(
2020
).
8.
A.
Mataji-kojouri
,
M. O.
Ozen
,
M.
Shahabadi
,
F.
Inci
, and
U.
Demirci
,
ACS Nano
14
,
8518
(
2020
).
9.
M. F.
Farahani
and
H.
Mosallaei
,
Opt. Lett.
38
,
462
(
2013
).
10.
F.
Aieta
,
P.
Genevet
,
M. A.
Kats
,
N.
Yu
,
R.
Blanchard
,
Z.
Gaburro
, and
F.
Capasso
,
Nano Lett.
12
,
4932
(
2012
).
11.
M.
Bozorgi
and
Z.
Atlasbaf
,
Opt. Commun.
391
,
48
(
2017
).
12.
M.
Rafaei-Booket
and
M.
Bozorgi
, in 26th Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018 (IEEE, Mashhad, 2018), pp. 420–423.
13.
M.
Rafaei-Booket
, and
S. M.
Mousavi
,
IET MIcrow. Antennas Propagat.
14
,
1108
(
2020
).
14.
Z. H.
Jiang
,
L.
Lin
,
D.
Ma
,
S.
Yun
,
D. H.
Werner
,
Z.
Liu
, and
T. S.
Mayer
,
Sci. Rep.
4
,
7511
(
2014
).
15.
A.
Soni
,
S.
Purohit
, and
R. S.
Hegde
,
IEEE Photonics Technol. Lett.
29
,
110
(
2017
).
16.
A.
Berkhout
and
A. F.
Koenderink
,
Nanophotonics
9
,
3985
(
2020
).
17.
M.
Bozorgi
and
Z.
Atlasbaf
,
J. Lightwave Technol.
34
,
2624
(
2016
).
18.
R. E.
Collin
,
IRE Trans. Microw. Theory Tech.
6
,
206
(
1958
).
19.
M.
Shahabadi
,
S.
Atakaramians
, and
N.
Hojjat
,
IEE Proc. Sci. Meas. Technol.
151
,
327
(
2004
).
20.
I. L.
Lyubchanskii
,
N. N.
Dadoenkova
,
M. I.
Lyubchanskii
,
E. A.
Shapovalov
, and
T.
Rasing
,
J. Phys. D: Appl. Phys.
36
,
R277
(
2003
).
21.
A. M.
Zuboraj
,
B. K.
Sertel
, and
C. J. L.
Volakis
,
Phys. Rev. Appl.
7
,
064030
064031
(
2017
).
22.
S. M.
Rytov
,
Sov. Phys. JEPT
2
,
466
(
1956
); available at http://www.jetp.ac.ru/cgi-bin/dn/e_002_03_0466.pdf.
23.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
New York
,
1991
).
24.
J. R.
Devore
,
J. Opt. Soc. Am.
41
,
416
(
1951
).
25.
R.
Mittra
,
C. H.
Chan
, and
T.
Cwik
,
Proc. IEEE
76
,
1593
(
1988
).
You do not currently have access to this content.