The propagation of acoustic or elastic waves in artificial crystals, including the case of phononic and sonic crystals, is inherently anisotropic. As is known from the theory of periodic composites, anisotropy is directly dictated by the space group of the unit cell of the crystal and the rank of the elastic tensor. Here, we examine effective velocities in the long wavelength limit of periodic acoustic and elastic composites as a function of the direction of propagation. We derive explicit and efficient formulas for estimating the effective velocity surfaces based on the second-order perturbation theory, generalizing the Christoffel equation for elastic waves in solids. We identify strongly anisotropic sonic crystals for scalar acoustic waves and strongly anisotropic phononic crystals for vector elastic waves. Furthermore, we observe that under specific conditions, quasi-longitudinal waves can be made much slower than shear waves propagating in the same direction.

1.
G. W.
Milton
, The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, Cambridge, 2002).
2.
R. V.
Craster
and
S.
Guenneau
, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, Springer Series in Materials Science Vol. 166 (Springer Science & Business Media, 2012).
3.
S. J.
Hollister
and
N.
Kikuchi
, “
A comparison of homogenization and standard mechanics analyses for periodic porous composites
,”
Comput. Mech.
10
,
73
95
(
1992
).
4.
A.
Sridhar
,
V. G.
Kouznetsova
, and
M. G.
Geers
, “
Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum
,”
Comput. Mech.
57
,
423
435
(
2016
).
5.
G.
Allaire
, “
Homogenization and two-scale convergence
,”
SIAM J. Math. Anal.
23
,
1482
1518
(
1992
).
6.
R. V.
Craster
,
J.
Kaplunov
, and
A. V.
Pichugin
, “
High-frequency homogenization for periodic media
,”
Proc. R. Soc. A
466
,
2341
2362
(
2010
).
7.
Y.
Chen
,
M.
Kadic
,
S.
Guenneau
, and
M.
Wegener
, “
Isotropic chiral acoustic phonons in 3D quasicrystalline metamaterials
,”
Phys. Rev. Lett.
124
,
235502
(
2020
).
8.
X.
Chen
,
J.
Moughames
,
Q.
Ji
,
J. A. I.
Martínez
,
H.
Tan
,
S.
Adrar
,
N.
Laforge
,
J.-M.
Cote
,
S.
Euphrasie
, and
G.
Ulliac
, et al.
Optimal isotropic, reusable truss lattice material with near-zero Poisson’s ratio
,”
Extreme Mech. Lett.
41
,
101048
(
2020
).
9.
Y.
Chen
,
T.
Frenzel
,
S.
Guenneau
,
M.
Kadic
, and
M.
Wegener
, “
Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity
,”
J. Mech. Phys. Solids
137
,
103877
(
2020
).
10.
F.
Cervera
,
L.
Sanchis
,
J.
Sánchez-Pérez
,
V. R.
Martínez-Sala
,
C.
Rubio
, and
F.
Meseguer
, “
Refractive acoustic devices for airborne sound
,”
Phys. Rev. Lett.
88
,
023902
(
2002
).
11.
Z.
Hou
,
F.
Wu
,
X.
Fu
, and
Y.
Liu
, “
Effective elastic parameters of the two-dimensional phononic crystal
,”
Phys. Rev. E
71
,
037604
(
2005
).
12.
P.
Halevi
,
A.
Krokhin
, and
J.
Arriaga
, “
Photonic crystal optics and homogenization of 2D periodic composites
,”
Phys. Rev. Lett.
82
,
719
(
1999
).
13.
A. A.
Krokhin
,
J.
Arriaga
, and
L. N.
Gumen
, “
Speed of sound in periodic elastic composites
,”
Phys. Rev. Lett.
91
,
264302
(
2003
).
14.
S.
Nemat-Nasser
,
J. R.
Willis
,
A.
Srivastava
, and
A. V.
Amirkhizi
, “
Homogenization of periodic elastic composites and locally resonant sonic materials
,”
Phys. Rev. B
83
,
104103
(
2011
).
15.
Q.
Ni
and
J.
Cheng
, “
Anisotropy of effective velocity for elastic wave propagation in two-dimensional phononic crystals at low frequencies
,”
Phys. Rev. B
72
,
014305
(
2005
).
16.
Q.
Ni
and
J.
Cheng
, “
Long wavelength propagation of elastic waves in three-dimensional periodic solid-solid media
,”
J. Appl. Phys.
101
,
073515
(
2007
).
17.
J.
Liu
,
Y.
Wu
,
F.
Li
,
P.
Zhang
,
Y.
Liu
, and
J.
Wu
, “
Anisotropy of homogenized phononic crystals with anisotropic material
,”
Europhys. Lett.
98
,
36001
(
2012
).
18.
D.
Torrent
,
Y.
Pennec
, and
B.
Djafari-Rouhani
, “
Resonant and nonlocal properties of phononic metasolids
,”
Phys. Rev. B
92
,
174110
(
2015
).
19.
A. A.
Kutsenko
,
A. L.
Shuvalov
, and
A. N.
Norris
, “
Evaluation of the effective speed of sound in phononic crystals by the monodromy matrix method (L)
,”
J. Acoust. Soc. Am.
130
,
3553
3557
(
2011
).
20.
A. A.
Kutsenko
,
A. L.
Shuvalov
,
A. N.
Norris
, and
O.
Poncelet
, “
Effective shear speed in two-dimensional phononic crystals
,”
Phys. Rev. B
84
,
064305
(
2011
).
21.
M.
Kafesaki
,
R. S.
Penciu
, and
E. N.
Economou
, “
Air bubbles in water: A strongly multiple scattering medium for acoustic waves
,”
Phys. Rev. Lett.
84
,
6050
6053
(
2000
).
22.
A. A.
Kutsenko
,
A. L.
Shuvalov
, and
A. N.
Norris
, “
On the quasistatic effective elastic moduli for elastic waves in three-dimensional phononic crystals
,”
J. Mech. Phys. Solids
61
,
2260
2272
(
2013
).
23.
V.
Laude
,
Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves
, 2nd ed. (
De Gruyter
,
Berlin
,
2020
).
24.
A.
Authier
, “Introduction to the properties of tensors,” in International Tables for Crystallography (
Kluwer Academic Publishers
,
2006
), Chap. 1.1., pp. 3–33.
25.
G. W.
Postma
, “
Wave propagation in a stratified medium
,”
Geophysics
20
,
780
806
(
1955
).
You do not currently have access to this content.