Interfaces are ubiquitous in electronics, photonics, and advanced materials. Interface engineering has become an essential strategy for developing functional materials with low thermal conductivities such as thermoelectric materials and thermal barrier coatings. On the other hand, interfaces are becoming a bottleneck for thermal management in electronic devices. Recent experiments have shown that a fin-like nanostructured interface with a size of 30–100 nm could enhance thermal transport across interfaces. Since phonon mean free paths span from several nanometers to dozens of micrometers, depending on the material, the size of the interface features may significantly affect the phonon transport regime and interface conductance. Here, the Monte Carlo simulation, with ab initio-based phonon properties as input parameters, was developed to study thermal conductance of a fin-like nanostructured interface. Simulated results indicate that the nanofin size (i.e., width, spacing, and height) significantly affects interface thermal conductance. Interface conductance is found to first increase and then decrease with increasing width of the nanofin when its height is 100 nm. This phenomenon is attributed to competition between the enlarged interface area and increased backscattering of transmitted phonons. This study demonstrates the existence of an optimal nanofin size for maximizing interface conductance, which could be important for thermal management of high-power electronics using nanostructured interfaces.

1.
S. V.
Garimella
,
A. S.
Fleischer
,
J. Y.
Murthy
,
A.
Keshavarzi
,
R.
Prasher
,
C.
Patel
,
S. H.
Bhavnani
,
R.
Venkatasubramanian
,
R.
Mahajan
, and
Y.
Joshi
, “
Thermal challenges in next-generation electronic systems
,”
IEEE Trans. Compon. Packag. Technol.
31
,
801
815
(
2008
).
2.
R. G.
Beausoleil
,
P. J.
Kuekes
,
G. S.
Snider
,
S.-Y.
Wang
, and
R. S.
Williams
, “
Nanoelectronic and nanophotonic interconnect
,”
Proc. IEEE
96
,
230
247
(
2008
).
3.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
,
Z.
Ren
,
J. P.
Fleurial
, and
P.
Gogna
, “
New directions for low-dimensional thermoelectric materials
,”
Adv. Mater.
19
,
1043
1053
(
2007
).
4.
L.
El Chaar
,
L. A.
Iamont
, and
N.
El Zein
, “
Review of photovoltaic technologies
,”
Renew. Sustain. Energy Rev.
15
,
2165
2175
(
2011
).
5.
A. L.
Moore
and
L.
Shi
, “
Emerging challenges and materials for thermal management of electronics
,”
Mater. Today
17
,
163
174
(
2014
).
6.
M. N.
Luckyanova
,
J.
Garg
,
K.
Esfarjani
,
A.
Jandl
,
M. T.
Bulsara
,
A. J.
Schmidt
,
A. J.
Minnich
,
S.
Chen
,
M. S.
Dresselhaus
, and
Z.
Ren
, “
Coherent phonon heat conduction in superlattices
,”
Science
338
,
936
939
(
2012
).
7.
R.
Yang
and
G.
Chen
, “
Thermal conductivity modeling of periodic two-dimensional nanocomposites
,”
Phys. Rev. B
69
,
195316
(
2004
).
8.
X.
Zhao
,
C.
Huang
,
Q.
Liu
,
I. I.
Smalyukh
, and
R.
Yang
, “
Thermal conductivity model for nanofiber networks
,”
J. Appl. Phys.
123
,
085103
(
2018
).
9.
A.
Evans
,
J.
Yu
,
J.
David
,
L.
Doris
,
K.
Mi
,
S.
Slivken
, and
M.
Razeghi
, “
High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers
,”
Appl. Phys. Lett.
84
,
314
316
(
2004
).
10.
E. R.
Heller
and
A.
Crespo
, “
Electro-thermal modeling of multifinger AlGaN/GaN HEMT device operation including thermal substrate effects
,”
Microelectron. Reliab.
48
,
45
50
(
2008
).
11.
M. T.
Barako
,
V.
Gambin
, and
J.
Tice
, “
Integrated nanomaterials for extreme thermal management: A perspective for aerospace applications
,”
Nanotechnology
29
,
154003
(
2018
).
12.
L.
Lindsay
,
D.
Broido
, and
T.
Reinecke
, “
Thermal conductivity and large isotope effect in GaN from first principles
,”
Phys. Rev. Lett.
109
,
095901
(
2012
).
13.
X.
Qian
,
P.
Jiang
, and
R.
Yang
, “
Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance
,”
Mater. Today Phys.
3
,
70
75
(
2017
).
14.
A.
Ward
,
D.
Broido
,
D. A.
Stewart
, and
G.
Deinzer
, “
Ab initio theory of the lattice thermal conductivity in diamond
,”
Phys. Rev. B
80
,
125203
(
2009
).
15.
J. G.
Felbinger
,
M.
Chandra
,
Y.
Sun
,
L. F.
Eastman
,
J.
Wasserbauer
,
F.
Faili
,
D.
Babic
,
D.
Francis
, and
F.
Ejeckam
, “
Comparison of GaN HEMTs on diamond and SiC substrates
,”
IEEE Electron Device Lett.
28
,
948
950
(
2007
).
16.
S.
Merabia
and
K.
Termentzidis
, “
Thermal boundary conductance across rough interfaces probed by molecular dynamics
,”
Phys. Rev. B
89
,
054309
(
2014
).
17.
Z.
Tian
,
K.
Esfarjani
, and
G.
Chen
, “
Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method
,”
Phys. Rev. B
86
,
235304
(
2012
).
18.
R.
Rastgarkafshgarkolaei
,
J.
Zhang
,
C. A.
Polanco
,
N. Q.
Le
,
A. W.
Ghosh
, and
P. M.
Norris
, “
Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers
,”
Nanoscale
11
,
6254
6262
(
2019
).
19.
Y.
Zhou
,
X.
Zhang
, and
M.
Hu
, “
An excellent candidate for largely reducing interfacial thermal resistance: A nano-confined mass graded interface
,”
Nanoscale
8
,
1994
2002
(
2016
).
20.
A.
van Roekeghem
,
B.
Vermeersch
,
J.
Carrete
, and
N.
Mingo
, “
Thermal resistance of Ga N/Al N graded interfaces
,”
Phys. Rev. Appl.
11
,
034036
(
2019
).
21.
M. D.
Losego
,
M. E.
Grady
,
N. R.
Sottos
,
D. G.
Cahill
, and
P. V.
Braun
, “
Effects of chemical bonding on heat transport across interfaces
,”
Nat. Mater.
11
,
502
(
2012
).
22.
P. E.
Hopkins
,
M.
Baraket
,
E. V.
Barnat
,
T. E.
Beechem
,
S. P.
Kearney
,
J. C.
Duda
,
J. T.
Robinson
, and
S. G.
Walton
, “
Manipulating thermal conductance at metal–graphene contacts via chemical functionalization
,”
Nano Lett.
12
,
590
595
(
2012
).
23.
M.
Shen
,
W. J.
Evans
,
D.
Cahill
, and
P.
Keblinski
, “
Bonding and pressure-tunable interfacial thermal conductance
,”
Phys. Rev. B
84
,
195432
(
2011
).
24.
M.
Demir
,
Z.
Yarar
, and
M.
Ozdemir
, “
Effect of polarization and interface roughness on the transport properties of AlGaN/GaN heterostructure
,”
Solid State Commun.
158
,
29
33
(
2013
).
25.
F. P.
Incropera
,
A. S.
Lavine
,
T. L.
Bergman
, and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
2007
).
26.
M.
Hu
,
X.
Zhang
,
D.
Poulikakos
, and
C. P.
Grigoropoulos
, “
Large ‘near junction’ thermal resistance reduction in electronics by interface nanoengineering
,”
Int. J. Heat Mass Transfer
54
,
5183
5191
(
2011
).
27.
X. W.
Zhou
,
R. E.
Jones
,
C. J.
Kimmer
,
J. C.
Duda
, and
P. E.
Hopkins
, “
Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations
,”
Phys. Rev. B
87
,
094303
(
2013
).
28.
K.
Termentzidis
,
P.
Chantrenne
, and
P.
Keblinski
, “
Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces
,”
Phys. Rev. B
79
,
214307
(
2009
).
29.
E.
Lee
,
T.
Zhang
,
T.
Yoo
,
Z.
Guo
, and
T.
Luo
, “
Nanostructures significantly enhance thermal transport across solid interfaces
,”
ACS Appl. Mater. Interfaces
8
,
35505
35512
(
2016
).
30.
W.
Park
,
A.
Sood
,
J.
Park
,
M.
Asheghi
,
R.
Sinclair
, and
K. E.
Goodson
, “
Enhanced thermal conduction through nanostructured interfaces
,”
Nanoscale Microscale Thermophys. Eng.
21
,
134
144
(
2017
).
31.
E.
Lee
,
E.
Menumerov
,
R. A.
Hughes
,
S.
Neretina
, and
T.
Luo
, “
Low-Cost nanostructures from nanoparticle-assisted large-scale lithography significantly enhance thermal energy transport across solid interfaces
,”
ACS Appl. Mater. Interfaces
10
,
34690
34698
(
2018
).
32.
Z.
Cheng
,
T.
Bai
,
J.
Shi
,
T.
Feng
,
Y.
Wang
,
M.
Mecklenburg
,
C.
Li
,
K. D.
Hobart
,
T.
Feygelson
, and
M. J.
Tadjer
, “
Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy
,”
ACS Appl. Mater. Interfaces
11
,
18517
18527
(
2019
).
33.
M. E.
Siemens
,
Q.
Li
,
R.
Yang
,
K. A.
Nelson
,
E. H.
Anderson
,
M. M.
Murnane
, and
H. C.
Kapteyn
, “
Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams
,”
Nat. Mater.
9
,
26
(
2010
).
34.
G.
Chen
, “
Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
,”
Phys. Rev. B
57
,
14958
(
1998
).
35.
J. P.
Freedman
,
J. H.
Leach
,
E. A.
Preble
,
Z.
Sitar
,
R. F.
Davis
, and
J. A.
Malen
, “
Universal phonon mean free path spectra in crystalline semiconductors at high temperature
,”
Sci. Rep.
3
,
2963
(
2013
).
36.
Y.
Hu
,
L.
Zeng
,
A. J.
Minnich
,
M. S.
Dresselhaus
, and
G.
Chen
, “
Spectral mapping of thermal conductivity through nanoscale ballistic transport
,”
Nat. Nanotechnol.
10
,
701
706
(
2015
).
37.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
,
605
(
1989
).
38.
H.
Zhao
and
J.
Freund
, “
Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces
,”
J. Appl. Phys.
97
,
024903
(
2005
).
39.
Y.
Chalopin
,
K.
Esfarjani
,
A.
Henry
,
S.
Volz
, and
G.
Chen
, “
Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics
,”
Phys. Rev. B
85
,
195302
(
2012
).
40.
K.
Gordiz
and
A.
Henry
, “
Phonon transport at crystalline Si/Ge interfaces: The role of interfacial modes of vibration
,”
Sci. Rep.
6
,
1
9
(
2016
).
41.
X.
Li
and
R.
Yang
, “
Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces
,”
Phys. Rev. B
86
,
054305
(
2012
).
42.
Q.
Hao
,
G.
Chen
, and
M.-S.
Jeng
, “
Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores
,”
J. Appl. Phys.
106
,
114321
(
2009
).
43.
W.
Tian
and
R.
Yang
, “
Thermal conductivity modeling of compacted nanowire composites
,”
J. Appl. Phys.
101
,
054320
(
2007
).
44.
W.
Tian
and
R.
Yang
, “
Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites
,”
Appl. Phys. Lett.
90
,
263105
(
2007
).
45.
J.-P. M.
Péraud
and
N. G.
Hadjiconstantinou
, “
Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations
,”
Phys. Rev. B
84
,
205331
(
2011
).
46.
J.-P. M.
Péraud
and
N. G.
Hadjiconstantinou
, “
An alternative approach to efficient simulation of micro/nanoscale phonon transport
,”
Appl. Phys. Lett.
101
,
153114
(
2012
).
47.
B.
Davier
,
J.
Larroque
,
P.
Dollfus
,
L.
Chaput
,
S.
Volz
,
D.
Lacroix
, and
J.
Saint-Martin
, “
Heat transfer in rough nanofilms and nanowires using full band ab initio Monte Carlo simulation
,”
J. Phys.: Condens. Matter
30
,
495902
(
2018
).
48.
D.
Broido
,
M.
Malorny
,
G.
Birner
,
N.
Mingo
, and
D.
Stewart
, “
Intrinsic lattice thermal conductivity of semiconductors from first principles
,”
Appl. Phys. Lett.
91
,
231922
(
2007
).
49.
X.
Gu
and
R.
Yang
, “
Phonon transport in single-layer transition metal dichalcogenides: A first-principles study
,”
Appl. Phys. Lett.
105
,
131903
(
2014
).
50.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
,
1747
1758
(
2014
).
51.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
, “
First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures
,”
Phys. Rev. B
78
,
134106
(
2008
).
52.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
53.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
54.
P.
Reddy
,
K.
Castelino
, and
A.
Majumdar
, “
Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion
,”
Appl. Phys. Lett.
87
,
211908
(
2005
).
55.
J.
Maassen
and
V.
Askarpour
, “
Phonon transport across a Si–Ge interface: The role of inelastic bulk scattering
,”
APL Mater.
7
,
013203
(
2019
).
56.
D.
Singh
,
J. Y.
Murthy
, and
T. S.
Fisher
, “
Effect of phonon dispersion on thermal conduction across Si/Ge interfaces
,”
J. Heat Transfer
133
,
122401
(
2011
).
57.
W.
Li
and
N.
Mingo
, “
Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles
,”
J. Appl. Phys.
114
,
183505
(
2013
).
58.
L.
Lindsay
,
D.
Broido
, and
T.
Reinecke
, “
Ab initio thermal transport in compound semiconductors
,”
Phys. Rev. B
87
,
165201
(
2013
).
59.
K.
Esfarjani
,
G.
Chen
, and
H. T.
Stokes
, “
Heat transport in silicon from first-principles calculations
,”
Phys. Rev. B
84
,
085204
(
2011
).
60.
A.
Jain
and
A. J.
McGaughey
, “
Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles
,”
Phys. Rev. B
93
,
081206
(
2016
).
61.
J.
Larroque
,
P.
Dollfus
, and
J.
Saint-Martin
, “
Phonon transmission at Si/Ge and polytypic Ge interfaces using full-band mismatch based models
,”
J. Appl. Phys.
123
,
025702
(
2018
).
62.
C. A.
Polanco
and
L.
Lindsay
, “
Phonon thermal conductance across GaN-AlN interfaces from first principles
,”
Phys. Rev. B
99
,
075202
(
2019
).
63.
N.
Yang
,
T.
Luo
,
K.
Esfarjani
,
A.
Henry
,
Z.
Tian
,
J.
Shiomi
,
Y.
Chalopin
,
B.
Li
, and
G.
Chen
, “
Thermal interface conductance between aluminum and silicon by molecular dynamics simulations
,”
J. Comput. Theor. Nanosci.
12
,
168
174
(
2015
).
64.
X.
Ran
,
Y.
Guo
, and
M.
Wang
, “
Interfacial phonon transport with frequency-dependent transmissivity by Monte Carlo simulation
,”
Int. J. Heat Mass Transfer
123
,
616
628
(
2018
).
65.
X.
Wu
and
T.
Luo
, “
Effect of electron-phonon coupling on thermal transport across metal-nonmetal interface—A second look
,”
Europhys. Lett.
110
,
67004
(
2015
).
66.
A.
Rajabpour
,
S.
Vaez Allaei
,
Y.
Chalopin
,
F.
Kowsary
, and
S.
Volz
, “
Tunable superlattice in-plane thermal conductivity based on asperity sharpness at interfaces: Beyond Ziman’s model of specularity
,”
J. Appl. Phys.
110
,
113529
(
2011
).
You do not currently have access to this content.