Amplifiers based on Josephson junctions allow for a fast and noninvasive readout of superconducting qubits. Motivated by the ongoing progress toward the realization of fault-tolerant qubits based on Majorana bound states, we investigate the topological counterpart of the Josephson bifurcation amplifier. We predict that the bifurcation dynamics of a topological Josephson junction driven in the appropriate parameter regime may be used as an additional tool to detect the emergence of Majorana bound states.

1.
For current perspectives of the field, see, e.g.
,
S. M.
Frolov
,
M. J.
Manfra
, and
J. D.
Sau
,
Nat. Phys.
16
,
718
(
2020
);
E.
Prada
,
P.
San-Jose
,
M. W. A.
de Moor
,
A.
Geresdi
,
E. J. H.
Lee
,
J.
Klinovaja
,
D.
Loss
,
J.
Nygard
,
R.
Aguado
and
L. P.
Kouwenhoven
,
Nat. Rev. Phys.
2, 575 (2020).
2.
For a review of the theory and the experiments, see, e.g.
,
R.
Aguado
,
La Rivista del Nuovo Cimento
40
,
523
(
2017
); R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg,
Nat. Rev. Mater.
3, 52 (2018).
3.
T.
Karzig
,
C.
Knapp
,
R. M.
Lutchyn
,
P.
Bonderson
,
M. B.
Hastings
,
C.
Nayak
,
J.
Alicea
,
K.
Flensberg
,
S.
Plugge
,
Y.
Oreg
,
C. M.
Marcus
, and
M. H.
Freedman
,
Phys. Rev. B
95
,
235305
(
2017
).
4.
F.
Hassler
,
A. R.
Akhmerov
, and
C. W. J.
Beenakker
,
New J. Phys.
13
,
095004
(
2011
).
5.
C.
Müller
,
J.
Bourassa
, and
A.
Blais
,
Phys. Rev. B
88
,
235401
(
2013
).
6.
D.
Pekker
,
C.-Y.
Hou
,
V. E.
Manucharyan
, and
E.
Demler
,
Phys. Rev. Lett.
111
,
107007
(
2013
).
7.
P.
Virtanen
and
P.
Recher
,
Phys. Rev. B
88
,
144507
(
2013
).
8.
E.
Ginossar
and
E.
Grosfeld
,
Nat. Commun.
5
,
4772
(
2014
).
9.
K.
Yavilberg
,
E.
Ginossar
, and
E.
Grosfeld
,
Phys. Rev. B
92
,
075143
(
2015
).
10.
O.
Dmytruk
,
M.
Trif
, and
P.
Simon
,
Phys. Rev. B
92
,
245432
(
2015
).
11.
J.
Väyrynen
,
G.
Rastelli
,
W.
Belzig
, and
L. I.
Glazman
,
Phys. Rev. B
92
,
134508
(
2015
).
12.
Y.
Peng
,
F.
Pientka
,
E.
Berg
,
Y.
Oreg
, and
F.
von Oppen
,
Phys. Rev. B
94
,
085409
(
2016
).
13.
M. C.
Dartiailh
,
T.
Kontos
,
B.
Douçot
, and
A.
Cottet
,
Phys. Rev. Lett.
118
,
126803
(
2017
).
14.
A.
Cottet
,
M. C.
Dartiailh
,
M. M.
Desjardins
,
T.
Cubanyes
,
L. C.
Contamin
,
M.
Delbecq
,
J. J.
Viennot
,
L. E.
Briuhat
,
B.
Douçot
, and
T.
Kontos
,
J. Phys. Condens. Matter
29
,
433002
(
2017
).
15.
M.
Trif
,
O.
Dmytruk
,
H.
Bouchiat
,
R.
Aguado
, and
P.
Simon
,
Phys. Rev. B
97
,
041415
(
2018
).
16.
A.
Keselman
,
C.
Murthy
,
B.
van Heck
, and
B.
Bauer
,
SciPost Phys.
7
,
50
(
2019
).
17.
P. L. S.
Lopes
,
S.
Boutin
,
P.
Karan
,
U. C.
Mendes
, and
I.
Garate
,
Phys. Rev. B
99
,
045103
(
2019
).
18.
J.
Avila
,
E.
Prada
,
P.
San-Jose
, and
R.
Aguado
,
Phys. Rev. B
102
,
094518
(
2020
).
19.
A. L.
Grimsmo
and
T. B.
Smith
,
Phys. Rev. B
99
,
235420
(
2019
);
T. B.
Smith
,
M. C.
Cassidy
,
D. J.
Reilly
,
S. D.
Bartlett
and
A. L.
Grimsmo
,
Phys. Rev. X Quantum
1, 020313 (2020).
20.
For a recent review, see, e.g.
,
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
, arXiv:2005.12667 (2020).
21.
T. W.
Larsen
,
K. D.
Peterson
,
F.
Kuenmeth
,
T. S.
Jespersen
,
P.
Krogstrup
,
J.
Nygård
, and
C. M.
Marcus
,
Phys. Rev. Lett.
115
,
127001
(
2015
).
22.
G.
de Lange
,
B.
van Heck
,
A.
Bruno
,
D. J.
Woerkom
,
A.
Geresdi
,
S. R.
Plissard
,
E. P. A. M.
Bakers
,
A. R.
Akhmerov
, and
L.
DiCarlo
,
Phys. Rev. Lett.
115
,
127002
(
2015
).
23.
D.
van Woerkom
,
A.
Proutski
,
B.
van Heck
,
D.
Bouman
,
J. I.
Väyrynen
,
L. I.
Glazman
,
P.
Krogstrup
,
J.
Nygård
,
L. P.
Kouwenhoven
, and
A.
Geresdi
,
Nat. Phys.
13
,
876
(
2017
).
24.
F.
Luthi
,
T.
Stavenga
,
O. W.
Enzing
,
A.
Bruno
,
C.
Dickel
,
N. K.
Langford
,
M. A.
Rol
,
T. S.
Jespersen
,
J.
Nygård
,
P.
Krogstrup
, and
L.
DiCarlo
,
Phys. Rev. Lett.
120
,
100502
(
2018
).
25.
L.
Tosi
,
C.
Metzger
,
M. F.
Goffman
,
C.
Urbina
,
H.
Pothier
,
S.
Park
,
A.
Levy yeyati
,
J.
Nygård
, and
P.
Krogstrup
,
Phys. Rev. X
9
,
011010
(
2019
).
26.
M.
Pita-Vidal
,
A.
Bargerbos
,
C.-K.
Yang
,
D. J.
van Woerkom
,
W.
Pfaff
,
N.
Haider
,
P.
Krogstrup
,
L. P.
Kouwenhoven
,
G.
de Lange
, and
A.
Kou
,
Phys. Rev. Appl.
14
,
064038
(
2020
).
27.
I.
Siddiqi
,
R.
Vijay
,
F.
Pierre
,
C. M.
Wilson
,
M.
Metcalfe
,
C.
Rigetti
,
L.
Frunzio
, and
M. H.
Devoret
,
Phys. Rev. Lett.
93
,
207002
(
2005
).
28.
For reviews, see, e.g.
,
R.
Vijay
,
M. H.
Devoret
, and
I.
Siddiqi
,
Rev. Sci. Instrum.
80
,
111101
(
2009
); R. Vijay, Ph.D. dissertation (Yale University, 2008).
29.
F.
Mallet
,
F. R.
Ong
,
A.
Palacios-Laloy
,
F.
Nguyen
,
P.
Bertet
,
D.
Vion
, and
D.
Esteve
,
Nat. Phys.
5
,
791
(
2009
).
30.
P.
Bertet
,
F. R.
Ong
,
M.
Boissonneault
,
A.
Bolduc
,
F.
Mallet
,
A.
Doherty
,
A.
Blais
,
D.
Vion
, and
D.
Esteve
, in Fluctuating Nonlinear Oscillators, edited by M. Dykman (Oxford University Press, 2011), Chap. 1.
31.
V.
Schmitt
,
X.
Zhou
,
K.
Juliusson
,
B.
Royer
,
A.
Blais
,
P.
Bertet
,
D.
Vion
, and
D.
Esteve
,
Phys. Rev. A
90
,
062333
(
2014
).
32.
M. A.
Castellanos-Beltran
and
K. W.
Lehnert
,
Appl. Phys. Lett.
91
,
083509
(
2007
).
33.
M.
Hatridge
,
R.
Vijay
,
D. H.
Slichter
,
J.
Clarke
, and
I.
Siddiqi
,
Phys. Rev. B
83
,
134501
(
2011
).
34.
Z. R.
Lin
,
K.
Inomata
,
W. D.
Oliver
,
K.
Koshino
,
Y.
Nakamura
,
J. S.
Tsai
, and
T.
Yamamoto
,
Appl. Phys. Lett.
103
,
132602
(
2013
).
35.
K.
Likharev
,
Dynamics of Josephson Junctions and Circuits
(
Gordon and Breach
,
Amsterdam
,
1986
).
36.
For a recent survey, see, e.g.
,
J. A.
Blackburn
,
M.
Cirillo
, and
N.
Gronbech-Jensen
,
Phys. Rep.
611
,
1
(
2016
).
37.
C. W. J.
Beenakker
,
D. I.
Pikulin
,
T.
Hyart
,
H.
Schomerus
, and
J. P.
Dahlhaus
,
Phys. Rev. Lett.
110
,
017003
(
2013
).
38.
For a review of current-phase relationships in topologically trivial Josephson junctions, see, e.g.
,
A. A.
Golubov
,
M. Y.
Kupriyanov
, and
E.
Il’ichev
,
Rev. Mod. Phys.
76
,
411
(
2004
).
39.
J.
Cayao
,
A. M.
Black-Schaffer
,
E.
Prada
, and
R.
Aguado
,
Beilstein J. Nanotechnol.
9
,
1339
(
2018
).
40.
For a review of the topological phase diagram, see, e.g.
,
J.
Alicea
,
Rep. Prog. Phys.
75
,
076501
(
2012
).
41.
G. E.
Blonder
,
M.
Tinkham
, and
T. M.
Klapwijk
,
Phys. Rev. B
25
,
4515
(
1982
).
42.
B.
van Heck
,
J. I.
Väyrynen
, and
L. I.
Glazman
,
Phys. Rev. B
96
,
075404
(
2017
).
43.
While the Josephson energy of the junction is reduced in the tunneling regime, we still assume that it is large compared to the charging energy of the junction.
44.
The implicit assumption here is that EJ0 will have a relatively featureless (or at least smooth) dependence in B, for the values of B that are required to induce a topological phase transition.
45.
J.
Cayao
,
P.
San-Jose
,
A.
Black-Schaffer
,
R.
Aguado
, and
E.
Prada
,
Phys. Rev. B
96
,
205425
(
2017
).
46.
P.
San-Jose
,
E.
Prada
, and
R.
Aguado
,
Phys. Rev. Lett.
112
,
137001
(
2014
).
47.
H.
Huang
,
Q.-F.
Liang
,
D.-X.
Yao
, and
Z.
Wang
,
Phys. Lett. A
381
,
2033
(
2017
).
48.
J.
Tiira
,
E.
Strambini
,
M.
Amado
,
S.
Roddaro
,
P.
San-Jose
,
R.
Aguado
,
F. S.
Bergeret
,
D.
Ercolani
,
L.
Sorba
, and
F.
Giazotto
,
Nat. Commun.
8
,
14984
(
2017
).
49.
P.
San-Jose
,
J.
Cayao
,
E.
Prada
, and
R.
Aguado
,
New J. Phys.
15
,
075019
(
2013
).
50.
C.
Murthy
,
V. D.
Kurilovich
,
P. D.
Kurilovich
,
B.
van Heck
,
L. I.
Glazman
, and
C.
Nayak
,
Phys. Rev. B
101
,
224501
(
2020
).
51.
This discussion does not apply to junctions of low transparency, because scattering at the interface between the electrodes and the weak link invalidates the picture of two quasi-independent p-wave gaps.
52.
Andreev bound states with near-zero energy (dubbed “quasi-Majorana states”) have been predicted to be ubiquitous in the trivial phase of Josephson junctions with smooth potential barriers, and to mimic the behavior of Majorana bound states; see, e.g.
,
A.
Vuik
,
B.
Nijholt
,
A. R.
Akhmerov
, and
M.
Wimmer
,
SciPost Phys.
7
,
061
(
2019
); The quasi-Majorana bound states are absent if the barrier potential is steep. Even though our tight-binding model does not explicitly incorporate potential barriers, the single-particle energy spectra we obtain for short (long) junctions map roughly onto those corresponding to steep (smooth) potential barriers.
53.
J.
Chen
,
P.
Yu
,
J.
Stenger
,
M.
Hocevar
,
D.
Car
,
S. P.
Plissard
,
E. P. A. M.
Bakkers
,
T. D.
Stanescu
, and
S. M.
Frolov
,
Sci. Adv.
9
,
e1701476
(
2017
).
55.
L.
Fu
and
C. L.
Kane
,
Phys. Rev. B
79
,
161408
(
2009
).
56.
L. P.
Rokhinson
,
X.
Liu
, and
J. K.
Furdyna
,
Nat. Phys.
8
,
795
(
2012
).
57.
J.
Wiedenmann
et al.,
Nat. Commun.
7
,
10303
(
2016
);
[PubMed]
E.
Bocquillon
,
R. S.
Deacon
,
J.
Wiedenmann
,
P.
Leubner
,
T. M.
Klapwijk
,
C.
Brüne
,
K.
Ishibashi
,
H.
Buhmann
and
L. W.
Molenkamp
,
Nat. Nanotechnol.
12
,
137
(
2017
).
[PubMed]
58.
D.
Laroche
,
D.
Bouman
,
D. J.
van Woerkom
,
A.
Proutski
,
C.
Murthy
,
D. I.
Pikulin
,
C.
Nayak
,
R. J. J.
van Gulik
,
P.
Krogstrup
,
L. P.
Kouwenhoven
, and
A.
Geresdi
,
Nat. Commun.
10
,
245
(
2019
).
59.
M.
Hays
,
G.
de Lange
,
K.
Serniak
,
D. J.
van Woerkom
,
D.
Bouman
,
P.
Krogstrup
,
J.
Nygård
,
A.
Geresdi
, and
M. H.
Devoret
,
Phys. Rev. Lett.
121
,
047001
(
2018
).
60.
V. D.
Kurilovich
,
C.
Murthy
,
P. D.
Kurilovich
,
B.
van Heck
,
L. I.
Glazman
, and
C.
Nayak
, arXiv:2102.05686 (2021).
You do not currently have access to this content.