Nanosecond plasmas in liquids are being used for water treatment, electrolysis, or biomedical applications. The exact nature of these very dynamic plasmas and, most importantly, their ignition physics are strongly debated. The ignition itself may be explained by two competing hypotheses: ignition in water may occur (i) via field effects at the tip of the electrode followed by tunneling of electrons in between water molecules causing field ionization or (ii) via gaseous processes of electron multiplication in nanovoids that are created from liquid ruptures due to the strong electric field gradients. Both hypotheses are supported by theory, but experimental data are very sparse due to the difficulty in monitoring the very fast processes in space and time. In this paper, we analyze nanosecond plasmas in water that are created by applying a positive and a negative polarity to a sharp tungsten electrode. The main diagnostics are fast camera measurements and fast emission spectroscopy. It is shown that plasma ignition is dominated by field effects at the electrode–liquid interface either as field ionization for positive polarity or as field emission for negative polarity. This leads to a hot tungsten surface at a temperature of 7000 K for positive polarity, whereas the surface temperature is much lower for negative polarity. At ignition, the electron density reaches 4×1025 m3 for the positive and 2×1025 m3 for the negative polarity. At the same time, the emission of the Hα light for the positive polarity is four times higher than that for the negative polarity. During plasma propagation, the electron densities are almost identical of the order of 1–2×1025 m3 followed by a decay after the end of the pulse over 15 ns. It is concluded that plasma propagation is governed by field effects in a low density region that is created either by nanovoids or by density fluctuations in supercritical water surrounding the electrode that is created by the pressure and temperature at the moment of plasma ignition.

1.
P. J.
Bruggeman
and
C.
Leys
,
J. Phys. D: Appl. Phys.
42
,
053001
(
2009
).
2.
Y.
Seepersad
,
M.
Pekker
,
M. N.
Shneider
,
A. A.
Fridman
, and
D.
Dobrynin
,
J. Phys. D: Appl. Phys.
46
,
355201
(
2013
).
3.
R. P.
Joshi
,
J. F.
Kolb
,
S.
Xiao
,
K. H.
Schoenbach
, and
K. H.
Schoenbach
,
Plasma Processes Polym.
6
,
763
777
(
2009
).
4.
J.
Zhuang
,
A.
Sun
, and
C.
Huo
,
High Voltage
1
,
74
80
(
2016
).
5.
A.
Sharbaugh
,
J.
Devins
, and
S.
Rzad
,
IEEE Trans. Electr. Insul.
EI-13
,
249
276
(
1978
).
6.
M.
Šimek
,
P.
Hoffer
,
J.
Tungli
,
V.
Prukner
,
J.
Schmidt
,
P.
Bílek
, and
Z.
Bonaventura
,
Plasma Sources Sci. Technol.
29
,
064001
(
2020
).
7.
P.
Hoffer
,
V.
Prukner
,
J.
Schmidt
, and
M.
Šimek
,
Jpn. J. Appl. Phys.
59
,
SHHA08
(
2020
).
8.
J. C.
Devins
,
S. J.
Rzad
, and
R. J.
Schwabe
,
J. Appl. Phys.
52
,
4531
4545
(
1981
).
9.
F.
O’Sullivan
,
J.
Hwang
,
M.
Zahn
,
O.
Hjortstam
,
L.
Pettersson
,
L.
Rongsheng
, and
P.
Biller
, “A model for the initiation and propagation of positive streamers in transformer oil,” in Conference Record of the 2008 IEEE International Symposium on Electrical Insulation (IEEE, Vancouver, BC, 2008), pp. 210–214, ISBN: 978-1-4244-2091-9.
10.
K.
Grosse
,
V.
Schulz-von der Gathen
, and
A.
von Keudell
,
Plasma Sources Sci. Technol.
29
,
095008
(
2020
).
11.
A.
von Keudell
,
K.
Grosse
, and
V.
Schulz-von der Gathen
,
Plasma Sources Sci. Technol.
29
,
085021
(
2020
).
12.
S.
Nijdam
,
J.
Teunissen
, and
U.
Ebert
,
Plasma Sources Sci. Technol.
29
,
103001
(
2020
).
13.
A.
Fridman
,
A.
Chirokov
, and
A.
Gutsol
,
J. Phys. D: Appl. Phys.
38
,
R1
R24
(
2005
).
14.
D. V.
Tereshonok
,
J. Phys. D: Appl. Phys.
50
,
015603
(
2017
).
15.
D. V.
Tereshonok
,
N. Y.
Babaeva
,
G. V.
Naidis
,
V. A.
Panov
,
B. M.
Smirnov
, and
E. E.
Son
,
Plasma Sources Sci. Technol.
27
,
045005
(
2018
).
16.
W. A.
Schmidt
,
Z. Naturforsch. A
19
,
318
327
(
1964
).
17.
A. R.
Anway
,
J. Chem. Phys.
50
,
2012
2021
(
1969
).
18.
M.
Shneider
,
M.
Pekker
, and
A.
Fridman
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
1579
1582
(
2012
).
19.
M. N.
Shneider
and
M.
Pekker
,
Phys. Rev. E
87
,
0
(
2013
).
20.
Y.
Li
,
L.
Li
,
J.
Wen
,
J.
Zhang
,
L.
Wang
, and
G.
Zhang
,
Plasma Sources Sci. Technol.
29
,
075005
(
2020
).
21.
A. C.
Aghdam
and
T.
Farouk
,
Plasma Sources Sci. Technol.
29
,
025011
(
2020
).
22.
S.
Stauss
,
H.
Muneoka
, and
K.
Terashima
,
Plasma Sources Sci. Technol.
27
,
023003
(
2018
).
23.
K.
Grosse
,
J.
Held
,
M.
Kai
, and
A.
von Keudell
,
Plasma Sources Sci. Technol.
28
,
085003
(
2019
).
24.
H.
Muneoka
,
K.
Urabe
,
S.
Stauss
, and
K.
Terashima
,
Phys. Rev. E
91
,
042316
(
2015
).
25.
T.
Ito
and
K.
Terashima
,
Appl. Phys. Lett.
80
,
2854
(
2002
).
26.
L.
Chauvet
,
C.
Nenbangkaeo
,
K.
Grosse
, and
A.
Keudell
,
Plasma Processes Polym.
17
,
e1900192
(
2020
).
27.
B.
Pongrác
,
M.
Šimek
,
M.
Člupek
,
V.
Babický
, and
P.
Lukeš
,
J. Phys. D: Appl. Phys.
51
,
124001
(
2018
).
28.
I.
Marinov
,
S.
Starikovskaia
, and
A.
Rousseau
,
J. Phys. D: Appl. Phys.
47
,
224017
(
2014
).
29.
M.
Šimek
,
B.
Pongrác
,
V.
Babický
,
M.
Člupek
, and
P.
Lukeš
,
Plasma Sources Sci. Technol.
26
,
07LT01
(
2017
).
30.
F.
Gilmore
, “The growth or collapse of a spherical bubble in a viscous compressible liquid,” Technical Report 26-4, Hydrodynamic Laboratory, Caltech Pasadena, CA, 1952.
31.
M. S.
Plesset
,
J. Appl. Mech.
16
,
277
(
1949
).
32.
M. S.
Plesset
and
A.
Prosperetti
,
Ann. Rev. Fluid Mech.
9
,
145
(
1977
).
33.
J. B.
Keller
and
M.
Miksis
,
J. Acoust. Soc. Am.
66
,
628
(
1980
).
34.
J. B.
Keller
and
I. I.
Kolodner
,
J. Appl. Phys.
27
,
1152
1161
(
1956
).
35.
M. A.
Gigosos
,
M. Á.
González
, and
V.
Cardeñoso
,
Spectrochim. Acta, Part B
58
,
1489
1504
(
2003
).
36.
R. D.
Cowan
and
G. H.
Dieke
,
Rev. Mod. Phys.
20
,
418
455
(
1948
).
37.
Y.
Seepersad
,
M.
Pekker
,
M. N.
Shneider
,
D.
Dobrynin
, and
A.
Fridman
,
J. Phys. D: Appl. Phys.
46
,
162001
(
2013
).
38.
R.
Gomer
,
Acc. Chem. Res.
5
,
41
48
(
1972
).
39.
E.
Herbert
,
S.
Balibar
, and
F.
Caupin
,
Phys. Rev. E
74
,
041603
(
2006
).
You do not currently have access to this content.