The requirements for high performance and low energy consumption call for novel light-weight high-temperature structural materials. A possible answer can be intermetallic γ-TiAl-based alloys, which—in terms of weight—clearly outperform the classical Ni based alloys. However, not only their mechanical properties, such as high specific strength and high creep resistance, are important for device design and use, but also their electrical behavior is of significant importance. In order to correctly interpret the results of electrical material testing techniques, such as eddy current testing, a profound knowledge on the electrical properties is essential. In this study, local-probe techniques, such as conductive atomic force microscopy (CAFM) and micro four-point probe (μ4PP) measurements, were used to determine the specific resistivity of the constituent phases of a Ti-43.5Al-4Nb-1Mo-0.1B (at. %) TNM γ-TiAl based alloy. It turned out that the different phases exhibit noticeably different resistivity values, which vary over two orders of magnitude, whereas the βo phase has the smallest resistivity and the α2 phase the highest. CAFM and μ4PP results were in rather good agreement for the α2 and γ phases with resistivity values of ρα2,CAFM = (1.0 ± 0.7) × 10−5 Ω m and ρα2,4PP = (1.5 ± 1.5) × 10−5 Ω m for the α2-phase, and ργ,CAFM = (6.5 ± 2.1) × 10−6 Ω m, and ργ,4PP = (1.4 ± 1.2) × 10−6 Ω m for the γ-phase. For the βo phase, μ4PP measurements resulted in ρβo,4PP = (9.0 ± 5.0) × 10−7 Ω m. In this case, CAFM values are not reliable due to the formation of a contact barrier that deteriorates the measurements.

1.
F.
Appel
,
J. D. H.
Paul
, and
M.
Oehring
,
Gamma Titanium Aluminide Alloys: Science and Technology
(
Wiley-VCH
,
Weinheim
,
2011
).
2.
H.
Clemens
and
S.
Mayer
,
Adv. Eng. Mater.
15
,
191
(
2013
).
3.
B. P.
Bewlay
,
S.
Nag
,
A.
Suzuki
, and
M. J.
Weimer
,
Mater. High Temp.
33
,
549
(
2016
).
4.
U.
Habel
,
F.
Heutling
,
C.
Kunze
,
W.
Smarsly
,
G.
Das
, and
H.
Clemens
, in
Proceedings of the 13th World Conference on Titanium
, edited by
V.
Venkatesh
,
A. L.
Pilchak
,
J. E.
Allison
,
S.
Ankem
,
R.
Boyer
,
J.
Christodoulou
,
H. L.
Fraser
,
M. A.
Imam
,
Y.
Kosaka
,
H. J.
Rack
,
A.
Chatterjee
, and
A.
Woodfield
(
John Wiley & Sons, Inc
,
Hoboken
,
NJ
,
2016
), p.
1223
.
5.
S.
Mayer
,
P.
Erdely
,
F. D.
Fischer
,
D.
Holec
,
M.
Kastenhuber
,
T.
Klein
, and
H.
Clemens
,
Adv. Eng. Mater.
19
,
1600735
(
2017
).
6.
M.
Burtscher
,
T.
Klein
,
J.
Lindemann
,
O.
Lehmann
,
H.
Fellmann
,
V.
Güther
,
H.
Clemens
, and
S.
Mayer
,
Materials
13
,
4720
(
2020
).
8.
W. J.
Zhang
,
B. V.
Reddy
, and
S. C.
Deevi
,
Scr. Mater.
45
,
645
(
2001
).
9.
I.
Egry
,
R.
Brooks
,
D.
Holland-Moritz
,
R.
Novakovic
,
T.
Matsushita
,
E.
Ricci
,
S.
Seetharaman
,
R.
Wunderlich
, and
D.
Jarvis
,
Int. J. Thermophys.
28
,
1026
(
2007
).
10.
F.
Appel
, in
Encyclopedia of Aerospace Engineering
, edited by
R.
Blockley
and
W.
Shyy
(
John Wiley & Sons, Ltd
,
Chichester
,
2010
), p.
187
.
11.
R.
Blockley
and
W.
Shyy
,
Encyclopedia of Aerospace Engineering
(
John Wiley & Sons, Ltd
,
Chichester
,
2010
).
12.
13.
T. L.
Alford
,
K. S.
Gadre
,
H. C.
Kim
, and
S. C.
Deevi
,
Appl. Phys. Lett.
83
,
455
(
2003
).
14.
J. G.
Li
,
B. C.
Wei
,
M. X.
Pan
,
D. Q.
Zhao
,
Y. G.
Zhang
, and
C. Q.
Chen
,
Mater. Sci. Eng. A
268
,
193
(
1999
).
15.
H.
Clemens
,
W.
Wallgram
,
S.
Kremmer
,
V.
Güther
,
A.
Otto
, and
A.
Bartels
,
Adv. Eng. Mater.
10
,
707
(
2008
).
16.
T.
Schmoelzer
,
K.-D.
Liss
,
G. A.
Zickler
,
I. J.
Watson
,
L. M.
Droessler
,
W.
Wallgram
,
T.
Buslaps
,
A.
Studer
, and
H.
Clemens
,
Intermetallics
18
,
1544
(
2010
).
17.
F.
Houzé
,
R.
Meyer
,
O.
Schneegans
, and
L.
Boyer
,
Appl. Phys. Lett.
69
,
1975
(
1996
).
18.
C.
Teichert
and
I.
Beinik
,
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2
, edited by
B.
Bhushan
(
Springer-Verlag
,
Berlin
,
2011
), p.
691
.
19.
M.
Nonnenmacher
,
M. P.
O’Boyle
, and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
58
,
2921
(
1991
).
20.
V.
Güther
,
M.
Allen
,
J.
Klose
, and
H.
Clemens
,
Intermetallics
103
,
12
(
2018
).
21.
M.
Schloffer
,
F.
Iqbal
,
H.
Gabrisch
,
E.
Schwaighofer
,
F.-P.
Schimansky
,
S.
Mayer
,
A.
Stark
,
T.
Lippmann
,
M.
Göken
,
F.
Pyczak
, and
H.
Clemens
,
Intermetallics
22
,
231
(
2012
).
22.
M.
Schloffer
,
T.
Schmoelzer
,
S.
Mayer
,
E.
Schwaighofer
,
G.
Hawranek
,
F.-P.
Schimansky
,
F.
Pyczak
, and
H.
Clemens
,
Practical Metallogr.
48
,
594
(
2011
).
23.
S.
Sadewasser
and
T.
Glatzel
,
Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization
(
Springer
,
Cham
,
2018
).
24.
H.
Clemens
and
S.
Mayer
,
Practical Metallogr.
52
,
691
(
2015
).
25.
T.
Klein
,
H.
Clemens
, and
S.
Mayer
,
Materials
9
,
755
(
2016
).
26.
L.
Cha
,
H.
Clemens
, and
G.
Dehm
,
Int. J. Mater. Res.
102
,
703
(
2011
).
27.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Clarendon Press
,
Oxford
,
1904
).
28.
Y. V.
Sharvin
,
Sov. Phys. JETP USSR
21
,
655
(
1965
).
29.
D.
Sarid
,
Exploring Scanning Probe Microscopy with MATHEMATICA
(
Wiley-VCH
,
Weinheim
,
2007
).
30.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
31.
G. W.
Kaye
and
T. H.
Laby
,
Tables of Physical and Chemical Constants and Some Mathematical Functions
(
Longmans, Green, and Co., London
,
New York
,
1911
).
32.
P.
Beiss
,
R.
Ruthardt
, and
H.
Warlimont
,
Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials
(
Springer-Verlag
,
Berlin
,
2002
).
33.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
(
CRC Press
,
Boca Raton
,
1993
).
34.
R. A.
Serway
,
Principles of Physics
(
Saunders College Pub.
,
Fort Worth
,
1998
).
35.
D.
Gall
,
J. Appl. Phys.
119
,
085101
(
2016
).
36.
J. W.
Arblaster
,
Johnson Matthey Technol. Rev.
59
,
174
(
2015
).
37.
J. R.
Davis
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
(
ASM International
,
Materials Park
,
OH
,
2000
).
39.
40.
H.
Tropsoe
,
Geometric Factors in Four Point Resistivity Measurements
(
Bridge Technology
,
1968
).
41.
I.
Miccoli
,
F.
Edler
,
H.
Pfnür
, and
C.
Tegenkamp
,
J. Phys.: Condens. Matter
27
,
223201
(
2015
).
42.
S. L.
Nyakana
,
J. C.
Fanning
, and
R. R.
Boyer
,
J. Mater. Eng. Perform.
14
,
799
(
2005
).
43.
A.
Dey
and
H. F.
Morrison
,
Geophysics
44
,
753
(
1979
).
44.
R.
Tran
,
X.-G.
Li
,
J. H.
Montoya
,
D.
Winston
,
K. A.
Persson
, and
S. P.
Ong
,
Surf. Sci.
687
,
48
(
2019
).
45.
B. T.
Jonker
,
J. F.
Morar
, and
R. L.
Park
,
Phys. Rev. B
24
,
2951
(
1981
).
46.
C.
Leyens
and
M.
Peters
,
Titanium and Titanium Alloys
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2003
).

Supplementary Material

You do not currently have access to this content.