Frustrated rare-earth pyrochlore titanates, Yb2Ti2O7 and Tb2Ti2O7, have been proposed as promising candidates to realize quantum spin ice (QSI). Multiple exotic quantum phases, including Coulombic ferromagnet, quantum valence bond solid, and quadrupolar ordering, have been predicted to emerge in the QSI state upon the application of a (111)-oriented external magnetic field. Here, we report on the successful layer-by-layer growth of thin films of the frustrated quantum pyrochlores, R2Ti2O7 (R=Er, Yb, and Tb), along the (111) direction. We confirm their high crystallinity and proper chemical composition by a combination of methods, including in situ RHEED, x-ray diffraction, reciprocal space mapping, and x-ray photoelectron spectroscopy. The availability of large area (111)-oriented QSI structures with planar geometry offers a new complementary to the bulk platform to explore the strain and the magnetic field-dependent properties in the quasi-2D limit.

1.
T.
Fennell
,
P.
Deen
,
A.
Wildes
,
K.
Schmalzl
,
D.
Prabhakaran
,
A.
Boothroyd
,
R.
Aldus
,
D.
McMorrow
, and
S.
Bramwell
, “
Magnetic coulomb phase in the spin ice Ho2Ti2O7
,”
Science
326
,
415
417
(
2009
).
2.
C.
Castelnovo
,
R.
Moessner
, and
S. L.
Sondhi
, “
Magnetic monopoles in spin ice
,”
Nature
451
,
42
45
(
2008
).
3.
L. D.
Jaubert
and
P. C.
Holdsworth
, “
Signature of magnetic monopole and dirac string dynamics in spin ice
,”
Nat. Phys.
5
,
258
261
(
2009
).
4.
S. T.
Bramwell
,
S.
Giblin
,
S.
Calder
,
R.
Aldus
,
D.
Prabhakaran
, and
T.
Fennell
, “
Measurement of the charge and current of magnetic monopoles in spin ice
,”
Nature
461
,
956
959
(
2009
).
5.
M. J.
Harris
,
S.
Bramwell
,
D.
McMorrow
,
T.
Zeiske
, and
K.
Godfrey
, “
Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7
,”
Phys. Rev. Lett.
79
,
2554
(
1997
).
6.
B. C.
den Hertog
and
M. J.
Gingras
, “
Dipolar interactions and origin of spin ice in ising pyrochlore magnets
,”
Phys. Rev. Lett.
84
,
3430
(
2000
).
7.
S. T.
Bramwell
and
M. J.
Gingras
, “
Spin ice state in frustrated magnetic pyrochlore materials
,”
Science
294
,
1495
1501
(
2001
).
8.
J. S.
Gardner
,
M. J.
Gingras
, and
J. E.
Greedan
, “
Magnetic pyrochlore oxides
,”
Rev. Mod. Phys.
82
,
53
(
2010
).
9.
J. G.
Rau
and
M. J.
Gingras
, “
Frustrated quantum rare-earth pyrochlores
,”
Annu. Rev. Condens. Matter Phys.
10
,
357
386
(
2019
).
10.
C.
Castelnovo
,
R.
Moessner
, and
S. L.
Sondhi
, “
Spin ice, fractionalization, and topological order
,”
Annu. Rev. Condens. Matter Phys.
3
,
35
55
(
2012
).
11.
L.
Balents
, “
Spin liquids in frustrated magnets
,”
Nature
464
,
199
208
(
2010
).
12.
C.
Broholm
,
R.
Cava
,
S.
Kivelson
,
D.
Nocera
,
M.
Norman
, and
T.
Senthil
, “
Quantum spin liquids
,”
Science
367
,
eaay0668
(
2020
).
13.
L.
Savary
and
L.
Balents
, “
Quantum spin liquids: A review
,”
Rep. Prog. Phys.
80
,
016502
(
2016
).
14.
Y.
Zhou
,
K.
Kanoda
, and
T.-K.
Ng
, “
Quantum spin liquid states
,”
Rev. Mod. Phys.
89
,
025003
(
2017
).
15.
J.
Knolle
and
R.
Moessner
, “
A field guide to spin liquids
,”
Annu. Rev. Condens. Matter Phys.
10
,
451
472
(
2019
).
16.
T.-H.
Han
,
J. S.
Helton
,
S.
Chu
,
D. G.
Nocera
,
J. A.
Rodriguez-Rivera
,
C.
Broholm
, and
Y. S.
Lee
, “
Fractionalized excitations in the spin-liquid state of a Kagome-lattice antiferromagnet
,”
Nature
492
,
406
410
(
2012
).
17.
N.
Janša
,
A.
Zorko
,
M.
Gomilšek
,
M.
Pregelj
,
K. W.
Krämer
,
D.
Biner
,
A.
Biffin
,
C.
Rüegg
, and
M.
Klanjšek
, “
Observation of two types of fractional excitation in the Kitaev honeycomb magnet
,”
Nat. Phys.
14
,
786
790
(
2018
).
18.
M. J.
Gingras
and
P. A.
McClarty
, “
Quantum spin ice: A search for gapless quantum spin liquids in pyrochlore magnets
,”
Rep. Prog. Phys.
77
,
056501
(
2014
).
19.
M.
Hermele
,
M. P.
Fisher
, and
L.
Balents
, “
Pyrochlore photons: The U(1) spin liquid in a S= 1/2 three-dimensional frustrated magnet
,”
Phys. Rev. B
69
,
064404
(
2004
).
20.
K. A.
Ross
,
L.
Savary
,
B. D.
Gaulin
, and
L.
Balents
, “
Quantum excitations in quantum spin ice
,”
Phys. Rev. X
1
,
021002
(
2011
).
21.
S.
Lee
,
S.
Onoda
, and
L.
Balents
, “
Generic quantum spin ice
,”
Phys. Rev. B
86
,
104412
(
2012
).
22.
O.
Benton
,
O.
Sikora
, and
N.
Shannon
, “
Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice
,”
Phys. Rev. B
86
,
075154
(
2012
).
23.
L.
Savary
and
L.
Balents
, “
Coulombic quantum liquids in spin-1/2 pyrochlores
,”
Phys. Rev. Lett.
108
,
037202
(
2012
).
24.
M. R.
Norman
, “
Colloquium: Herbertsmithite and the search for the quantum spin liquid
,”
Rev. Mod. Phys.
88
,
041002
(
2016
).
25.
G.
Chen
, “
Dirac’s “magnetic monopoles” in pyrochlore ice U(1) spin liquids: Spectrum and classification
,”
Phys. Rev. B
96
,
195127
(
2017
).
26.
B.
Gao
,
T.
Chen
,
D. W.
Tam
,
C.-L.
Huang
,
K.
Sasmal
,
D. T.
Adroja
,
F.
Ye
,
H.
Cao
,
G.
Sala
,
M. B.
Stone
,
C.
Baines
,
J. A. T.
Verezhak
,
H.
Hu
,
J.-H.
Chung
,
X.
Xu
,
S.-W.
Cheong
,
M.
Nallaiyan
,
S.
Spagna
,
M. B.
Maple
,
A. H.
Nevidomskyy
,
E.
Morosan
,
G.
Chen
, and
P.
Dai
, “
Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore
,”
Nat. Phys.
15
,
1052
1057
(
2019
).
27.
X.-P.
Yao
,
Y.-D.
Li
, and
G.
Chen
, “
Pyrochlore u(1) spin liquid of mixed-symmetry enrichments in magnetic fields
,”
Phys. Rev. Res.
2
,
013334
(
2020
).
28.
B.
Canals
and
C.
Lacroix
, “
Pyrochlore antiferromagnet: A three-dimensional quantum spin liquid
,”
Phys. Rev. Lett.
80
,
2933
2936
(
1998
).
29.
R.
Sibille
,
E.
Lhotel
,
V.
Pomjakushin
,
C.
Baines
,
T.
Fennell
, and
M.
Kenzelmann
, “
Candidate quantum spin liquid in the Ce3+ pyrochlore stannate Ce2Sn2O7
,”
Phys. Rev. Lett.
115
,
097202
(
2015
).
30.
L.
Clark
,
G. J.
Nilsen
,
E.
Kermarrec
,
G.
Ehlers
,
K. S.
Knight
,
A.
Harrison
,
J. P.
Attfield
, and
B. D.
Gaulin
, “
From spin glass to quantum spin liquid ground states in molybdate pyrochlores
,”
Phys. Rev. Lett.
113
,
117201
(
2014
).
31.
Y.
Wan
,
J.
Carrasquilla
, and
R. G.
Melko
, “
Spinon walk in quantum spin ice
,”
Phys. Rev. Lett.
116
,
167202
(
2016
).
32.
Y.
Kato
and
S.
Onoda
, “
Numerical evidence of quantum melting of spin ice: Quantum-to-classical crossover
,”
Phys. Rev. Lett.
115
,
077202
(
2015
).
33.
O.
Benton
,
L. D.
Jaubert
,
R. R.
Singh
,
J.
Oitmaa
, and
N.
Shannon
, “
Quantum spin ice with frustrated transverse exchange: From a π-flux phase to a nematic quantum spin liquid
,”
Phys. Rev. Lett.
121
,
067201
(
2018
).
34.
M.
Udagawa
and
R.
Moessner
, “
Spectrum of itinerant fractional excitations in quantum spin ice
,”
Phys. Rev. Lett.
122
,
117201
(
2019
).
35.
R.
Sibille
,
N.
Gauthier
,
E.
Lhotel
,
V.
Porée
,
V.
Pomjakushin
,
R. A.
Ewings
,
T. G.
Perring
,
J.
Ollivier
,
A.
Wildes
,
C.
Ritter
et al., “
A quantum liquid of magnetic octupoles on the pyrochlore lattice
,”
Nat. Phys.
16
,
546
552
(
2020
).
36.
A.
Poole
,
A. S.
Wills
, and
E.
Lelièvre-Berna
, “
Magnetic ordering in the XY pyrochlore antiferromagnet Er2Ti2O7: A spherical neutron polarimetry study
,”
J. Phys. Condens. Matter
19
,
452201
(
2007
).
37.
L.
Pan
,
S. K.
Kim
,
A.
Ghosh
,
C. M.
Morris
,
K. A.
Ross
,
E.
Kermarrec
,
B. D.
Gaulin
,
S.
Koohpayeh
,
O.
Tchernyshyov
, and
N.
Armitage
, “
Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb2Ti2O7
,”
Nat. Commun.
5
,
1
7
(
2014
).
38.
H. R.
Molavian
,
M. J.
Gingras
, and
B.
Canals
, “
Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects
,”
Phys. Rev. Lett.
98
,
157204
(
2007
).
39.
J.
Ruff
,
B.
Gaulin
,
J.
Castellan
,
K.
Rule
,
J.
Clancy
,
J.
Rodriguez
, and
H.
Dabkowska
, “
Structural fluctuations in the spin-liquid state of Tb2Ti2O7
,”
Phys. Rev. Lett.
99
,
237202
(
2007
).
40.
Y.
Tokiwa
,
T.
Yamashita
,
D.
Terazawa
,
K.
Kimura
,
Y.
Kasahara
,
T.
Onishi
,
Y.
Kato
,
M.
Halim
,
P.
Gegenwart
,
T.
Shibauchi
et al., “
Discovery of emergent photon and monopoles in a quantum spin liquid
,”
J. Phys. Soc. Jpn.
87
,
064702
(
2018
).
41.
R.
Sibille
,
N.
Gauthier
,
H.
Yan
,
M. C.
Hatnean
,
J.
Ollivier
,
B.
Winn
,
U.
Filges
,
G.
Balakrishnan
,
M.
Kenzelmann
,
N.
Shannon
et al., “
Experimental signatures of emergent quantum electrodynamics in Pr2Hf2O7
,”
Nat. Phys.
14
,
711
715
(
2018
).
42.
O.
Benton
, “
Instabilities of a U(1) quantum spin liquid in disordered non-Kramers pyrochlores
,”
Phys. Rev. Lett.
121
,
037203
(
2018
).
43.
G.
Chen
, “
’Magnetic monopole’ condensation of the pyrochlore ice U(1) quantum spin liquid: Application to Pr2Ir2O7 and Yb2Ti2O7
,”
Phys. Rev. B
94
,
205107
(
2016
).
44.
A.
Scheie
,
J.
Kindervater
,
S.
Zhang
,
H. J.
Changlani
,
G.
Sala
,
G.
Ehlers
,
A.
Heinemann
,
G. S.
Tucker
,
S. M.
Koohpayeh
, and
C.
Broholm
, “
Multiphase magnetism in Yb2Ti2O7
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
44
),
27245
27254
(
2020
).
45.
H.
Takatsu
,
H.
Kadowaki
,
T. J.
Sato
,
J. W.
Lynn
,
Y.
Tabata
,
T.
Yamazaki
, and
K.
Matsuhira
, “
Quantum spin fluctuations in the spin-liquid state of Tb2Ti2O7
,”
J. Phys. Condens. Matter
24
,
052201
(
2011
).
46.
H. R.
Molavian
and
M. J. P.
Gingras
, “
Proposal for a [111] magnetization plateau in the spin liquid state of Tb2Ti2O7
,”
J. Phys. Condens. Matter
21
,
172201
(
2009
).
47.
J.
Nasu
,
M.
Udagawa
, and
Y.
Motome
, “
Vaporization of kitaev spin liquids
,”
Phys. Rev. Lett.
113
,
197205
(
2014
).
48.
C.
Hickey
and
S.
Trebst
, “
Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model
,”
Nat. Commun.
10
,
1
10
(
2019
).
49.
H.
Takagi
,
T.
Takayama
,
G.
Jackeli
,
G.
Khaliullin
, and
S. E.
Nagler
, “
Concept and realization of Kitaev quantum spin liquids
,”
Nat. Rev. Phys.
1
,
264
280
(
2019
).
50.
Y.
Motome
and
J.
Nasu
, “
Hunting majorana fermions in Kitaev magnets
,”
J. Phys. Soc. Jpn.
89
,
012002
(
2020
).
51.
L.
Savary
and
L.
Balents
, “
Disorder-induced quantum spin liquid in spin ice pyrochlores
,”
Phys. Rev. Lett.
118
,
087203
(
2017
).
52.
N.
Martin
,
P.
Bonville
,
E.
Lhotel
,
S.
Guitteny
,
A.
Wildes
,
C.
Decorse
,
M. C.
Hatnean
,
G.
Balakrishnan
,
I.
Mirebeau
, and
S.
Petit
, “
Disorder and quantum spin ice
,”
Phys. Rev. X
7
,
041028
(
2017
).
53.
J.-J.
Wen
,
S.
Koohpayeh
,
K.
Ross
,
B.
Trump
,
T.
McQueen
,
K.
Kimura
,
S.
Nakatsuji
,
Y.
Qiu
,
D.
Pajerowski
,
J.
Copley
et al., “
Disordered route to the coulomb quantum spin liquid: Random transverse fields on spin ice in Pr2Zr2O7
,”
Phys. Rev. Lett.
118
,
107206
(
2017
).
54.
D.
Bowman
,
E.
Cemal
,
T.
Lehner
,
A.
Wildes
,
L.
Mangin-Thro
,
G.
Nilsen
,
M.
Gutmann
,
D.
Voneshen
,
D.
Prabhakaran
,
A.
Boothroyd
et al., “
Role of defects in determining the magnetic ground state of ytterbium titanate
,”
Nat. Commun.
10
,
1
8
(
2019
).
55.
S.
Petit
,
E.
Lhotel
,
S.
Guitteny
,
O.
Florea
,
J.
Robert
,
P.
Bonville
,
I.
Mirebeau
,
J.
Ollivier
,
H.
Mutka
,
E.
Ressouche
et al., “
Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7
,”
Phys. Rev. B
94
,
165153
(
2016
).
56.
G.
van de Velde
,
B.
Lippens
,
S.
Korf
, and
J.
Boeijsma
, “
Powder diffraction data for the imperfect pyrochlore terbium titanate, Tb2Ti2O7
,”
Powder Diffr.
5
,
229
231
(
1990
).
57.
R. S.
Kumar
,
A. L.
Cornelius
,
M.
Somayazulu
,
D.
Errandonea
,
M. F.
Nicol
, and
J.
Gardner
, “
High pressure structure of Tb2Ti2O7 pyrochlore at cryogenic temperatures
,”
Phys. Status Solidi B
244
,
266
269
(
2007
).
58.
P. R.
Scott
,
A.
Midgley
,
O.
Musaev
,
D.
Muthu
,
S.
Singh
,
R.
Suryanarayanan
,
A.
Revcolevschi
,
A.
Sood
, and
M.
Kruger
, “
High-pressure synchrotron x-ray diffraction study of the pyrochlores: Ho2Ti2O7, Y2Ti2O7 and Tb2Ti2O7
,”
High Press Res.
31
,
219
227
(
2011
).
59.
E.
Kermarrec
,
D.
Maharaj
,
J.
Gaudet
,
K.
Fritsch
,
D.
Pomaranski
,
J.
Kycia
,
Y.
Qiu
,
J.
Copley
,
M.
Couchman
,
A.
Morningstar
et al., “
Gapped and gapless short-range-ordered magnetic states with (1/2, 1/2, 1/2) wave vectors in the pyrochlore magnet Tb2+xTi2xO7+δ
,”
Phys. Rev. B
92
,
245114
(
2015
).
60.
K.
Vlášková
,
B.
Vondráčková
,
S.
Daniš
, and
M.
Klicpera
, “
High temperature study on Er2Ti2O7 single crystal
,”
Acta Phys. Pol.
137
,
753
755
(
2020
).
61.
M.
Ruminy
,
L.
Bovo
,
E.
Pomjakushina
,
M.
Haas
,
U.
Stuhr
,
A.
Cervellino
,
R.
Cava
,
M.
Kenzelmann
, and
T.
Fennell
, “
Sample independence of magnetoelastic excitations in the rare-earth pyrochlore Tb2Ti2O7
,”
Phys. Rev. B
93
,
144407
(
2016
).
62.
Y.
Yasui
,
M.
Soda
,
S.
Iikubo
,
M.
Ito
,
M.
Sato
,
N.
Hamaguchi
,
T.
Matsushita
,
N.
Wada
,
T.
Takeuchi
,
N.
Aso
, and
K.
Kakurai
, “
Ferromagnetic transition of pyrochlore compound Yb2Ti2O7
,”
J. Phys. Soc. Jpn.
72
,
3014
3015
(
2003
).
63.
A.
Yaouanc
,
P. D.
de Réotier
,
L.
Keller
,
B.
Roessli
, and
A.
Forget
, “
A novel type of splayed ferromagnetic order observed in Yb2Ti2O7
,”
J. Phys. Condens. Matter
28
,
426002
(
2016
).
64.
X.
Liu
,
S.
Middey
,
Y.
Cao
,
M.
Kareev
, and
J.
Chakhalian
, “
Geometrical lattice engineering of complex oxide heterostructures: A designer approach to emergent quantum states
,”
MRS Commun.
6
,
133
144
(
2016
).
65.
J.
Chakhalian
,
X.
Liu
, and
G. A.
Fiete
, “
Strongly correlated and topological states in [111] grown transition metal oxide thin films and heterostructures
,”
APL Mater.
8
,
050904
(
2020
).
66.
X.
Liu
,
S.
Singh
,
B. J.
Kirby
,
Z.
Zhong
,
Y.
Cao
,
B.
Pal
,
M.
Kareev
,
S.
Middey
,
J. W.
Freeland
,
P.
Shafer
et al., “
Emergent magnetic state in (111)-oriented quasi-two-dimensional spinel oxides
,”
Nano Lett.
19
,
8381
8387
(
2019
).
67.
X.
Liu
,
F.
Wen
,
E.
Karapetrova
,
J.-W.
Kim
,
P.
Ryan
,
J.
Freeland
,
M.
Terilli
,
T.-C.
Wu
,
M.
Kareev
, and
J.
Chakhalian
, “
In-situ fabrication and transport properties of (111) Y2Ir2O7 epitaxial thin film
,”
Appl. Phys. Lett.
117
,
041903
(
2020
).
68.
X.
Liu
,
T.
Asaba
,
Q.
Zhang
,
Y.
Cao
,
B.
Pal
,
S.
Middey
,
P.
Kumar
,
M.
Kareev
,
L.
Gu
,
D.
Sarma
et al., “Quantum spin liquids by geometric lattice design,” arXiv:1911.00100 (2019).
69.
T. A.
Bojesen
and
S.
Onoda
, “
Quantum spin ice under a [111] magnetic field: From pyrochlore to kagome
,”
Phys. Rev. Lett.
119
,
227204
(
2017
).
70.
H.
Kadowaki
,
H.
Takatsu
, and
M.
Wakita
, “
Dimensional change of the quadrupole order in pseudospin-1/2 pyrochlore magnets under magnetic field in the [111] direction
,”
Phys. Rev. B
98
,
144410
(
2018
).
71.
L.
Bovo
,
C. M.
Rouleau
,
D.
Prabhakaran
, and
S. T.
Bramwell
, “
Layer-by-layer epitaxial thin films of the pyrochlore Tb2Ti2O7
,”
Nanotechnology
28
,
055708
(
2016
).
72.
L.
Bovo
,
X.
Moya
,
D.
Prabhakaran
,
Y.-A.
Soh
,
A.
Boothroyd
,
N.
Mathur
,
G.
Aeppli
, and
S.
Bramwell
, “
Restoration of the third law in spin ice thin films
,”
Nat. Commun.
5
,
1
8
(
2014
).
73.
M.
Kareev
,
S.
Prosandeev
,
B.
Gray
,
J.
Liu
,
P.
Ryan
,
A.
Kareev
,
E.
Ju Moon
, and
J.
Chakhalian
, “
Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation
,”
J. Appl. Phys.
109
,
114303
(
2011
).
74.
S.
Kaya
and
E.
Yilmaz
, “
Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation
,”
Nucl. Instrum. Methods Phys. Res. B
418
,
74
79
(
2018
).
75.
H.
Wang
,
M.
Simmonds
, and
J.
Rodenburg
, “
Manufacturing of YbAG coatings and crystallisation of the pure and Li2O-doped Yb2O3–Al2O3 system by a modified sol–gel method
,”
Mater. Chem. Phys.
77
,
802
807
(
2003
).
76.
W.
Cartas
,
R.
Rai
,
A.
Sathe
,
A.
Schaefer
, and
J. F.
Weaver
, “
Oxidation of a Tb2O3 (111) thin film on Pt (111) by gas-phase oxygen atoms
,”
J. Phys. Chem. C
118
,
20916
20926
(
2014
).
77.
S.
Shibagaki
and
K.
Fukushima
, “
XPS analysis on Nb–SrTiO3 thin films deposited with pulsed laser ablation technique
,”
J. Eur. Ceram. Soc.
19
,
1423
1426
(
1999
).
78.
F.
Wen
,
Y.
Cao
,
X.
Liu
,
B.
Pal
,
S.
Middey
,
M.
Kareev
, and
J.
Chakhalian
, “
Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3
,”
Appl. Phys. Lett.
112
,
122405
(
2018
).
79.
N.
Guerfi
,
O.
Bourbia
, and
S.
Achour
, “Study of erbium oxidation by xps and ups,” in Materials Science Forum (Trans Tech Publications, 2005), Vol. 480, pp. 193–196.
80.
S.
Scalese
,
S.
Mirabella
, and
A.
Terrasi
, “
XPS and RBS investigations of Si–Er–O interactions on a Si (100)-2x1 surface
,”
Appl. Surf. Sci.
220
,
231
237
(
2003
).
81.
T.-M.
Pan
and
T.-Y.
Yu
, “
Comparison of the structural properties and electrical characteristics of Pr2O3, Nd2O3 and Er2O3 charge trapping layer memories
,”
Semicond. Sci. Technol.
24
,
095022
(
2009
).
82.
T.-M.
Pan
and
W.-S.
Huang
, “
Physical and electrical characteristics of a high-k Yb2O3 gate dielectric
,”
Appl. Surf. Sci.
255
,
4979
4982
(
2009
).
83.
M. M.
Rahman
,
M.
Alam
,
A. M.
Asiri
, and
M.
Islam
, “
Fabrication of selective chemical sensor with ternary ZnO/SnO2/Yb2O3 nanoparticles
,”
Talanta
170
,
215
223
(
2017
).
84.
C. J.
Lee
,
S.
Vashishtha
,
A.
Sayal
, and
J. F.
Weaver
, “
Oxidation of a c-Tb2O3 (111) thin film by the sequential formation of stoichiometric phases
,”
Surf. Sci.
694
,
121555
(
2020
).
85.
Q.
Wang
,
A.
Ghasemi
,
A.
Scheie
, and
S.
Koohpayeh
, “
Synthesis, crystal growth and characterization of the pyrochlore Er2Ti2O7
,”
CrystEngComm
21
,
703
709
(
2019
).
86.
K.
Arpino
,
B.
Trump
,
A.
Scheie
,
T.
McQueen
, and
S.
Koohpayeh
, “
Impact of stoichiometry of Yb2Ti2O7 on its physical properties
,”
Phys. Rev. B
95
,
094407
(
2017
).
87.
K.
Rule
and
P.
Bonville
, “Tetragonal distortion in Tb2Ti2O7 seen by neutron scattering,” in Journal of Physics: Conference Series (IOP Publishing, 2009), Vol. 145, p. 012027.
88.
J.
Gardner
,
B.
Gaulin
, and
D. M.
Paul
, “
Single crystal growth by the floating-zone method of a geometrically frustrated pyrochlore antiferromagnet, Tb2Ti2O7
,”
J. Cryst. Growth
191
,
740
745
(
1998
).
89.
L.
Zhang
,
W.
Zhang
,
J.
Zhu
,
Q.
Hao
,
C.
Xu
,
X.
Yang
,
L.
Lu
, and
X.
Wang
, “
Synthesis of Er2Ti2O7 nanocrystals and its electrochemical hydrogen storage behavior
,”
J. Alloys Compd.
480
,
L45
L48
(
2009
).
90.
B.
Cao
,
J.
Wu
,
N.
Yu
,
Z.
Feng
, and
B.
Dong
, “
Structure and upconversion luminescence properties of Er3+–Mo6+ codoped Yb2Ti2O7 films
,”
Thin Solid Films
550
,
495
498
(
2014
).
91.
K.
Baroudi
,
B. D.
Gaulin
,
S. H.
Lapidus
,
J.
Gaudet
, and
R.
Cava
, “
Symmetry and light stuffing of Ho2Ti2O7, Er2Ti2O7, and Yb2Ti2O7 characterized by synchrotron x-ray diffraction
,”
Phys. Rev. B
92
,
024110
(
2015
).
You do not currently have access to this content.