Wire explosion is a technically straightforward green method for nanoparticle production; however, the determination of polydisperse and multimodal particle size distribution and thereby the assessment of the efficiency of the process pose serious challenges. Fitting extinction spectra derived from the Mie theory to the measured extinction spectra of colloidal solutions produced by the explosion of copper wires of 70 μm diameter and 20 mm length by discharging a capacitor of 435 nF charged to voltages ranging from 4 to 12 kV in an aqueous environment allows for determining the size distribution of the particles in the 10–300 nm diameter range and provides information on their oxidation state as well. In underwater wire explosion of copper, the vast majority of the nanoparticles transforms into copper oxides already during the process. The size distribution remains bimodal throughout the whole charging voltage range investigated. The nanoparticles follow a lognormal size distribution with a mode at 30 nm, while the fine particle population extending from 100 to 300 nm in diameter is dominated by rather normally distributed copper droplets with modes at 160–170 nm. The energy injected into the wire controls the individual concentration of both the fine and nanoparticles with the modes and ranges remaining hardly affected. The number concentration of the nanoparticles increases monotonically with the energy, spanning more than one order of magnitude. The throughput assessed by the total mass of the nanoparticles divided by the total mass of all species identified in the sol within the 0–300 nm diameter range increases monotonically from 1% at 4 kV up to 41% at 12 kV, revealing that wire explosion can be optimized for efficient nanoparticle production.

1.
E.
Nairne
,
Philos. Trans. R. Soc.
64
,
79
(
1774
).
2.
W. G.
Chace
and
H. K.
Moore
,
Exploding Wires
(
Plenum Press
,
New York
,
1959
), Vol.
I
.
3.
W. G.
Chace
and
H. K.
Moore
,
Exploding Wires
(
Plenum Press
,
New York
,
1962
), Vol.
II
.
4.
W. G.
Chace
and
H. K.
Moore
,
Exploding Wires
(
Plenum Press
,
New York
,
1964
), Vol.
III
.
5.
W. G.
Chace
and
H. K.
Moore
,
Exploding Wires
(
Plenum Press
,
New York
,
1968
), Vol.
IV
.
6.
A.
Grinenko
,
V. T.
Gurovich
,
A.
Saypin
,
S.
Efimov
,
Y. E.
Krasik
, and
V. I.
Oreshkin
,
Phys. Rev. E
72
,
066401
(
2005
).
7.
R.
Han
,
H.
Zhou
,
J.
Wu
,
T.
Clayson
,
H.
Ren
,
J.
Wu
,
Y.
Zhang
, and
A.
Qiu
,
Phys. Plasmas
24
,
063511
(
2017
).
8.
L.
Li
,
D.
Qian
,
X.
Zou
, and
X.
Wang
,
IEEE Trans. Plasma Sci.
46
,
3444
(
2018
).
9.
Y. A.
Kotov
,
J. Nanopart. Res.
5
,
539
(
2003
).
10.
C.
Cho
,
Y. W.
Choi
,
C.
Kang
, and
G. W.
Lee
,
Appl. Phys. Lett.
91
,
141501
(
2007
).
11.
B.
Bora
,
C. S.
Wong
,
H.
Bhuyan
,
Y. S.
Lee
,
S. L.
Yap
, and
M.
Favre
,
J. Quant. Spectrosc. Radiat. Transfer
117
,
1
(
2013
).
12.
G. J.
Lee
,
C. K.
Kim
,
M. K.
Lee
, and
C. K.
Rhee
,
Powder Technol.
261
,
143
(
2014
).
13.
W. H.
Chung
,
Y. T.
Hwang
,
S. H.
Lee
, and
H. S.
Kim
,
Nanotechnology
27
,
205704
(
2016
).
14.
Y. E.
Krasik
,
S.
Efimov
,
D.
Sheftman
,
A.
Fedotov-Gefen
,
O.
Antonov
,
D.
Shafer
,
D.
Yanuka
,
M.
Nitishinskiy
,
M.
Kozlov
,
L.
Gilburd
,
G.
Toker
,
S.
Gleizer
,
E.
Zvulun
,
V. T.
Gurovich
,
D.
Varentsov
, and
M.
Rodionova
,
IEEE Trans. Plasma Sci.
44
,
412
(
2016
).
15.
Y. S.
Kwon
,
Y. H.
Jung
,
N. A.
Yavorovsky
,
A. P.
Illyn
, and
J. S.
Kim
,
Scr. Mater.
44
,
2247
(
2001
).
16.
S. I.
Tkachenko
,
V. S.
Vorob’ev
, and
S. P.
Malyshenko
,
J. Phys. D: Appl. Phys.
37
,
495
(
2004
).
17.
S. I.
Tkachenko
,
S. A.
Pikuz
,
V. M.
Romanova
,
A. E.
Ter-Oganesyan
,
A. R.
Mingaleev
, and
T. A.
Shelkovenko
,
J. Phys. D: Appl. Phys.
40
,
1742
(
2007
).
18.
V.
Jankauskas
,
J.
Padgurskas
,
A.
Žunda
, and
I.
Prosyčevas
,
Surf. Eng. Appl. Electrochem.
47
,
170
(
2011
).
19.
J. W.
Song
,
D. J.
Lee
,
F.
Yilmaz
, and
S. J.
Hong
,
J. Nanomater.
2012
,
792429
(
2012
).
20.
V.
Amendola
and
M.
Meneghetti
,
J. Phys. Chem. C
113
,
4277
(
2009
).
21.
C.
Salzemann
,
I.
Lisiecki
,
A.
Brioude
,
J.
Urban
, and
M. P.
Pileni
,
J. Phys. Chem. B
108
,
13242
(
2004
).
22.
M.
Blosi
,
S.
Albonetti
,
M.
Dondi
,
C.
Martelli
, and
G.
Baldi
,
J. Nanopart. Res.
13
,
127
(
2011
).
23.
J. M. J.
Santillán
,
F. A.
Videla
,
M. B.
Fernández Van Raap
,
D. C.
Schinca
, and
L. B.
Scaffardi
,
J. Appl. Phys.
113
,
134305
(
2013
).
24.
E.
Park
,
H. W.
Park
, and
J.
Lee
,
Colloids Surf. A
482
,
710
(
2015
).
25.
K. P.
Rice
,
A. S.
Paterson
, and
M. P.
Stoykovich
,
Part. Part. Syst. Charact.
32
,
373
(
2015
).
26.
M. V.
Roldán
,
L. B.
Scaffardi
,
O.
de Sanctis
, and
N.
Pellegri
,
Mater. Chem. Phys.
112
,
984
(
2008
).
27.
L. B.
Scaffardi
,
N.
Pellegri
,
O.
de Sanctis
, and
J. O.
Tocho
,
Nanotechnology
16
,
158
(
2005
).
28.
X.
Liu
,
M.
Atwater
,
J.
Wang
, and
Q.
Huo
,
Colloids Surf. B
58
,
3
(
2007
).
29.
N. L.
Pacioni
,
V.
Filippenko
,
N.
Presseau
, and
J. C.
Scaiano
,
Dalton Trans.
42
,
5832
(
2013
).
30.
K.
Midander
,
P.
Cronholm
,
H. L.
Karlsson
,
K.
Elihn
,
L.
Möller
,
C.
Leygraf
, and
I. O.
Wallinder
,
Small
5
,
389
(
2009
).
31.
X.
Xia
,
C.
Xie
,
S.
Cai
,
Z.
Yang
, and
X.
Yang
,
Corros. Sci.
48
,
3924
(
2006
).
32.
P.
Laven
, MiePlot v4.6, available at: http://www.philiplaven.com/mieplot.htm.
33.
C. F.
Bohren
and
D. R.
Huffmann
,
Absorption and Scattering of Light by Small Particles
(
Wiley-VCH Verlag GmbH
,
Weinheim
,
1998
).
34.
P. B.
Johnson
and
R. W.
Christry
,
Phys. Rev. B
6
,
4370
(
1972
).
35.
D.
Segelstein
, “The complex refractive index of water,” M.Sc. thesis (University of Missiouri-Kansas City, 1981), available at https://mospace.umsystem.edu/xmlui/handle/10355/11599.
36.
T.
Dahlang
and
T.
Sven
,
J. Phys.: Condens. Matter
24
,
175002
(
2012
).
37.
E. D.
Palik
,
Handbook of Optical Constants of Solids II
(
Elsevier Inc.
,
1997
).
38.
V. F.
Drobny
and
L.
Pulfrey
,
Thin Solid Films
61
,
89
(
1979
).
39.
B. K.
Meyer
,
A.
Polity
,
D.
Reppin
,
M.
Becker
,
P.
Hering
,
P. J.
Klar
,
T.
Sander
,
C.
Reindl
,
J.
Benz
,
M.
Eickhoff
,
C.
Heiliger
,
M.
Heinemann
,
J.
Bläsing
,
A.
Krost
,
S.
Shokovets
,
C.
Müller
, and
C.
Ronning
,
Phys. Status Solidi B
249
,
1487
(
2012
).
40.
C. E.
Ekuma
,
V. I.
Anisimov
,
J.
Moreno
, and
M.
Jarrell
,
Eur. Phys. J. B
87
,
1
(
2014
).
41.
J. M. J.
Santillán
,
F. A.
Videla
,
L. B.
Scaffardi
, and
D. C.
Schinca
,
Plasmonics
8
,
341
(
2013
).
42.
M.
Muniz-Miranda
,
C.
Gellini
, and
E.
Giorgetti
,
J. Phys. Chem. C
115
,
5021
(
2011
).
43.
Y. S.
Lee
,
B.
Bora
,
S. L.
Yap
, and
C. S.
Wong
,
Curr. Appl. Phys.
12
,
199
(
2012
).
44.
Y. S.
Kwon
,
V. V.
An
,
A. P.
Ilyin
, and
D. V.
Tikhonov
,
Mater. Lett.
61
,
3247
(
2007
).
45.
E.
Ju Park
,
S.
Won Lee
,
I. C.
Bang
, and
H. W.
Park
,
Nanoscale Res. Lett.
6
,
223
(
2011
).
46.
Y.
Kinemuchi
,
C.
Sangurai
,
T.
Suzuki
,
H.
Suematsu
,
W.
Jiang
, and
K.
Yatsui
,
Pulsed Power Plasma Sci.
2
,
1830
(
2001
).
47.
C.
Peng
,
J.
Wang
,
N.
Zhou
, and
G.
Sun
,
Curr. Appl. Phys.
16
,
284
(
2016
).
48.
S. I.
Tkachenko
and
N. I.
Kuskova
,
J. Phys.: Condens. Matter
11
,
2223
(
1999
).
49.
J. K.
Antony
,
N. J.
Vasa
,
S. R.
Chakravarthy
, and
R.
Sarathi
,
J. Quant. Spectrosc. Radiat. Transfer
111
,
2509
(
2010
).
50.
S.
Aravinth
,
B.
Sankar
,
S. R.
Chakravarthi
, and
R.
Sarathi
,
Mater. Charact.
62
,
248
(
2011
).
51.
A.
Pervikov
,
M.
Lerner
, and
K.
Krukovskii
,
Curr. Appl. Phys.
17
,
201
(
2017
).
52.
T. K.
Sindhu
,
R.
Sarathi
, and
S. R.
Chakravarthy
,
Bull. Mater. Sci.
30
,
187
(
2007
).
53.
C.
Cho
,
K.
Murai
,
T.
Suzuki
,
H.
Suematsu
,
W.
Jiang
, and
K.
Yatsui
,
IEEE Trans. Plasma Sci.
32
,
2062
(
2003
).
54.
Y.
Tokoi
,
K.
Josho
,
Y. M.
Izuari
,
T.
Suzuki
,
T.
Nakayama
,
H.
Suematsu
,
S. W.
Lee
,
Z.
Fu
, and
K.
Niihara
,
IOP Conf. Ser. Mater. Sci. Eng.
20
,
012008
(
2011
).
55.
Y.
Tokoi
,
S.
Nagasawa
,
H.
Suematsu
,
H.
Cho
,
T.
Nakayama
, and
K.
Niihara
,
Mater. Sci. Forum
761
,
121
(
2013
).
56.
E.
Park
and
H. W.
Park
,
Colloids Surf. A
459
,
100
(
2014
).
57.
C.
Cho
,
C.
Kang
,
Y.
Ha
,
Y.
Jin
, and
G.
Rim
,
J. Korean Phys. Soc.
59
,
3662
(
2011
).
58.
D. P.
Wall
,
J. E.
Allen
, and
S.
Molokov
,
J. Appl. Phys.
98
,
023304
(
2005
).
59.
M. J.
Taylor
,
J. Phys. D: Appl. Phys.
35
,
700
(
2002
).
60.
N. I.
Kuskova
,
V. Y.
Baklar
,
V. I.
Gordienko
, and
S. A.
Khainatskii
,
Surf. Eng. Appl. Electrochem.
44
,
36
(
2008
).
61.
N. I.
Kuskova
,
V. Y.
Baklar
, and
S. A.
Khainatskii
,
Surf. Eng. Appl. Electrochem.
45
,
186
(
2009
).
62.
G. S.
Sarkisov
,
K. W.
Struve
, and
D. H.
McDaniel
,
Phys. Plasmas
12
,
052702
(
2005
).
63.
A. E.
Vlastós
,
J. Appl. Phys.
38
,
4993
(
1967
).
64.
V. M.
Romanova
,
A. R.
Mingaleev
,
A. E.
Ter-Oganesyan
,
T. A.
Shelkovenko
,
G. V.
Ivanenkov
, and
S. A.
Pikuz
,
Matter Radiat. Extremes
4
,
026401
(
2019
).
65.
A. E.
Vlastós
,
J. Appl. Phys.
39
,
3081
(
1968
).
66.
R.
Sinton
,
R.
Van Herel
,
W.
Enright
, and
P.
Bodger
,
J. Appl. Phys.
108
,
053304
(
2010
).
67.
M. V.
Aleyas
,
P. M.
Madhu
,
K.
Safwan
,
A. T.
Safwan
, and
A. T.
Nisham
,
Int. J. Res. Eng. Technol.
3
,
2319
(
2014
).
68.
R.
Das
,
B.
Das
,
R.
Shukla
,
P.
Banerjee
,
S.
Shrama
,
P.
Deb
,
T.
Prabaharan
,
B.
Adhikary
, and
A.
Shyam
,
AIP Conf. Proc.
1349
,
237
(
2011
).
You do not currently have access to this content.