Flexoelectricity is an electromechanical phenomenon that, unlike piezoelectricity, is present in any material. While the largest flexoelectric response is observed in ferroelectrics and related materials, its manifestations in various other materials are of great interest for a broad scope of scientific and industrial tasks. Here, we provide a simple theoretical model for flexoelectricity in metals. This is done in terms of continuum mechanics. Estimates for aluminum are provided, and guidelines for an experimental detection of the phenomenon are formulated. The magnitude for the flexoelectric effect in metals is found to be comparable with that in high-k dielectrics, which makes metals just as good as other materials for applications in flexoelectric sensing and energy harvesting. Besides, in metals, flexoelectricity may be easier to interpret because it is predicted to be free of surface contributions.

1.
A. K.
Tagantsev
, “
Theory of flexoelectric effects in crystals
,”
Zh. Eksper. I Teor. Fiz.
88
(
6
),
2108
2122
(
1985
).
2.
L. L.
Ma
,
W. J.
Chen
, and
Y.
Zheng
, Flexoelectric Effect at the Nanoscale (Springer, Singapore, 2019), pp. 549–589.
3.
E. V.
Bursian
and
O. I.
Zaikovskii
, “
Changes in the curvature of a ferroelectric film due to polarization
,”
Sov. Phys. Solid State
10
(
5
),
1121
1124
(
1968
).
4.
E. V.
Bursian
,
O. I.
Zaikovskii
, and
K. V.
Makarov
, “
Ferroelectric plate polarization by bending
,”
Izvestiya Akad. Nauk SSSR Seri. Fizicheskaya
33
(
7
),
1098
1102
(
1969
).
5.
É. V.
Bursian
and
N. N.
Trunov
, “
Nonlocal piezoelectric effect
,”
Sov. Phys. Solid State
10
,
760
762
(
1974
).
6.
J. D.
Axe
,
J.
Harada
, and
G.
Shirane
, “
Anomalous acoustic dispersion in centrosymmetric crystals with soft optic phonons
,”
Phys. Rev. B
1
,
1227
1234
(
1970
).
7.
P. V.
Yudin
,
A. K.
Tagantsev
,
E. A.
Eliseev
,
A. N.
Morozovska
, and
N.
Setter
, “
Bichiral structure of ferroelectric domain walls driven by flexoelectricity
,”
Phys. Rev. B
86
(
13
),
134102
(
2012
).
8.
W.
Ma
and
L. E.
Cross
, “
Strain-gradient-induced electric polarization in lead zirconate titanate ceramics
,”
Appl. Phys. Lett.
82
(
19
),
3293
3295
(
2003
).
9.
H.
Lu
,
C.-W.
Bark
,
D. E.
De Los Ojos
,
J.
Alcala
,
C.-B.
Eom
,
G.
Catalan
, and
A.
Gruverman
, “
Mechanical writing of ferroelectric polarization
,”
Science
336
(
6077
),
59
61
(
2012
).
10.
A.
Zabalo
and
M.
Stengel
, “
Switching a polar metal via strain gradients
,”
Phys. Rev. Lett.
126
(
12
),
127601
(
2021
).
11.
Y.
Shi
,
Y.
Guo
,
X.
Wang
,
A. J.
Princep
,
D.
Khalyavin
,
P.
Manuel
,
Y.
Michiue
,
A.
Sato
,
K.
Tsuda
, and
S.
Yu
et al., “
A ferroelectric-like structural transition in a metal
,”
Nat. Mater.
12
(
11
),
1024
1027
(
2013
).
12.
E.
Bauer
and
M.
Sigrist
,
Non-centrosymmetric Superconductors: Introduction and Overview
(
Springer Science & Business Media
,
2012
), Vol. 847.
13.
C.-K.
Lu
and
S.
Yip
, “
Spin current in topologically trivial and nontrivial noncentrosymmetric superconductors
,”
Phys. Rev. B
82
(
10
),
104501
(
2010
).
14.
A. N.
Morozovska
,
E. A.
Eliseev
,
A. K.
Tagantsev
,
S. L.
Bravina
,
L.-Q.
Chen
, and
S. V.
Kalinin
, “
Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, vegard strains, and flexoelectric effect
,”
Phys. Rev. B
83
(
19
),
195313
(
2011
).
15.
A. N.
Morozovska
,
O. V.
Varenyk
, and
S. V.
Kalinin
, “Impact of flexoelectric effect on electro-mechanics of moderate conductors,” in Flexoelectricity in Solids: From Theory to Applications (World Scientific, 2017), pp. 265–283.
16.
A. I.
Akhiezer
,
M. I.
Kaganov
, and
G.
La Liubarskii
, “
Ultrasonic absorption in metals
,”
Sov. Phys. (JETP)
5
(
4
),
685
688
(
1957
).
17.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics, Theory of Elasticity
(
Elsevier
,
1986
), Vol. 7.
18.
L. D.
Landau
,
E. M.
Lifshitz
, and
L. P.
Pitaevskij
,
Course of Theoretical Physics, Vol. 10: Physical Kinetics
(
Oxford
,
1981
).
You do not currently have access to this content.