The aim of this article is twofold. First, to develop a clear quantum theoretical playground where questions about the connection between strain fields and electric fields could be unambiguously explored. Second, as an application, to derive a criterion that establishes the length scale below which bent molecules, in particular, carbon nanotubes, display flexoelectricty. To this end, we consider a model molecule that displays the basic elements necessary to support flexoelectricity. Due to its simplicity, a full quantum mechanical solution is possible, providing analytical expressions for the energy bands and for the electronic states and their corresponding strain gradient-induced charge density. This charge density is in turn used to evaluate the appearance of electric fields. Finally, we investigate the consequences of applying our model to real organic ring systems, in particular, answering the question of whether flexoelectricity found in the theory should be present in experiments.

1.
S. M.
Kogan
, “
Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals, Sov
,”
Phys. Solid State
5
,
2069
(
1964
).
2.
E. V.
Bursian
and
O. I.
Zaikovskii
, “
Changes in the curvature of a ferroelectric film due to polarization
,”
Sov. Phys. Solid State
10
,
1121
(
1968
).
3.
A.
Abdollahi
,
N.
Domingo
,
I.
Arias
, and
G.
Catalán
, “
Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials,”
Nat. Commun.
10
,
1266
(
2019
).
4.
J.
Hong
and
D.
Vanderbilt
, “
First-principles theory of frozen-ion flexoelectricity
,”
Phys. Rev. B
84
,
180101(R)
(
2011
).
5.
M.
Stengel
, “
Flexoelectricity from density-functional perturbation theory
,”
Phys. Rev. B
88
,
174106
(
2103
).
6.
S. V.
Kalinin
and
V.
Meunier
, “
Electronic flexoelectricity in low-dimensional systems
,”
Phys. Rev. B
77
,
033403
(
2008
).
7.
A. K.
Tagantsev
, “
Piezoelectricity and flexoelectricity in crystalline dielectrics
,”
Phys. Rev. B
34
,
5883
(
1986
).
8.
J.
Hong
and
D.
Vanderbilt
, “
First-principles theory and calculation of flexoelectricity
,”
Phys. Rev. B
88
,
174107
(
2013
).
9.
M.
Stengel
, “
Unified ab initio formulation of flexoelectricity and strain-gradient elasticity
,”
Phys. Rev. B
93
,
245107
(
2016
).
10.
P.
Zubko
,
G.
Catalán
, and
A. K.
Tagantsev
, “
Flexoelectric effect in solids
,”
Annu. Rev. Mater. Res.
43
,
387
(
2013
).
11.
J.
Narvaez
,
F.
Vásquez-Sancho
, and
G.
Catalán
, “
Enhanced flexoelectric-like response in oxide semiconductors
,”
Nature
538
,
219
221
(
2016
).
12.
J.
Narvaez
,
S.
Saremi
,
J.
Hong
,
M.
Stengel
, and
G.
Catalán
, “
Large flexoelectric anisotropy in paraelectric barium titanate
,”
Phys. Rev. Lett.
115
,
037601
(
2015
).
13.
A.
Abdollahi
,
F.
Vásquez-Sancho
, and
G.
Catalán
, “
Piezoelectric mimicry of flexoelectricity
,”
Phys. Rev. Lett.
121
,
205502
(
2018
).
14.
L.
Li
,
S. J.
Eppell
, and
F. R.
Zypman
, “
Method to quantify nanoscale surface charge in liquid with atomic force microscopy
,”
Langmuir
36
,
4123
(
2020
).
15.
L.
Li
,
N. F.
Steinmetz
,
S. J.
Eppell
, and
F. R.
Zypman
, “
Charge calibration standard for atomic force microscope tips in liquids
,”
Langmuir
36
,
13621
(
2020
).
16.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College
,
Philadelphia, PA
,
1976
), Chap. 10.
17.
F. R.
Zypman
and
L. F.
Fonseca
, “
Electron-diffraction effects on scanning tunneling spectroscopy
,”
Phys. Rev. B
55
,
15012
(
1997
).
18.
P. W.
Atkins
,
Molecular Quantum Mechanics
, 2nd ed. (
Oxford University Press
,
Oxford, NY
,
1993
), p.
254
.
19.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
New York
,
1975
), Chap. 4.
20.
I. V.
Lindell
,
Methods for Electromagnetic Field Analysis
(
Wiley-Blackwell
,
New York
,
1996
), Chap. 2.
21.
K.
Kaiser
,
L. M.
Scriven
,
F.
Schulz
,
P.
Gawel
,
L.
Gross1
, and
H. L.
Anderson
, “
An sp-hybridized molecular carbon allotrope, cyclo[18]carbon
,”
Science
365
,
1299
1301
(
2019
).
22.
D.
Papaconstantopoulos
,
M.
Mehl
,
S.
Erwin
, and
M.
Pederson
, “
Tight-binding Hamiltonians for carbon and silicon
,”
MRS Online Proc. Libr.
491
,
221
(
1997
),
23.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
(
2010
).
24.
D.
Lazarev
and
F. R.
Zypman
, “
Charge and size of a ring in an electrolyte with atomic force microscopy
,”
J. Electrost.
87
,
243
(
2017
).
25.
D.
Lazarev
and
F. R.
Zypman
, “
Determination of charge and size of rings by atomic force microscopy
,”
J. Electrost.
83
,
69
(
2016
).
You do not currently have access to this content.