The detailed understanding of energy transfer between hot electrons and lattice vibrations at non-cryogenic temperatures relies primarily upon the interpretation of ultrafast pump–probe experiments, where thermo-optical models provide insight into the relationship between optical response and temperature of the respective sub-systems; in one of the more studied materials, gold, the Drude model provides this relationship. In this work, we investigate the role of intra- and interband contributions applied to transient optical responses in ultrafast pump–probe experiments using both experiments and first-principle calculations, with probe wavelengths spanning from UV wavelengths into the infrared. We find that during conditions of electron–phonon equilibrium, the Drude model is not applicable to visible wavelengths due to interband transitions. Instead, at probe wavelengths far from these interband transitions (e.g., infrared wavelengths), the optical response is linearly proportional to the temperature of the phonon sub-system and is no longer obfuscated by Fermi-smearing, thus greatly simplifying the extraction of the electron–phonon coupling factor. Our intraband-probe measurements on the electron–phonon coupling factor of Au are in excellent agreement with analytical models and ab initio calculations; we observe a constant electron–phonon coupling factor up to electron temperatures of at least 2000 K.

1.
V. P.
Zhukov
,
V. G.
Tyuterev
,
E. V.
Chulkov
, and
P. M.
Echenique
, “
Electron–phonon relaxation and excited electron distribution in gallium nitride
,”
J. Appl. Phys.
120
,
085708
(
2016
).
2.
F. M.
Abou El-Ela
, “
Monte Carlo simulation of electron transport in AlGaAs
,”
AIP Conf. Proc.
748
,
86
(
2005
).
3.
H.
Frohlich
, “
Theory of electrical breakdown in ionic crystals
,”
Proc. R. Soc. A
160
,
230
(
1937
).
4.
B. C.
Stuart
,
M. D.
Feit
,
S.
Herman
,
A. M.
Rubenchik
,
B. W.
Shore
, and
M. D.
Perry
, “
Optical ablation by high-power short-pulse lasers
,”
J. Opt. Soc. Am. B
13
,
459
(
1996
).
5.
E.
Suzuki
,
Y.
Hayashi
, and
H.
Yanai
, “
Transport processes of electrons in MNOS structures
,”
J. Appl. Phys.
50
,
7001
(
1979
).
6.
V. K.
Pustovalov
, “
Light-to-heat conversion and heating of single nanoparticles, their assemblies, and the surrounding medium under laser pulses
,”
RSC Adv.
6
,
81266
(
2016
).
7.
X.
Huang
and
M. A.
El-Sayed
, “
Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy
,”
J. Adv. Res.
1
,
13
(
2010
).
8.
S. S.
Wellershoff
,
J.
Hohlfeld
,
J.
Güdde
, and
E.
Matthias
, “
The role of electron–phonon coupling in femtosecond laser damage of metals
,”
Appl. Phys. A: Mater. Sci. Process.
69
,
99
(
1999
).
9.
M. D.
Perry
,
B. C.
Stuart
,
P. S.
Banks
,
M. D.
Feit
,
V.
Yanovsky
, and
A. M.
Rubenchik
, “
Ultrashort-pulse laser machining of dielectric materials
,”
J. Appl. Phys.
85
,
6803
(
1999
).
10.
J. K.
Chen
,
D. Y.
Tzou
, and
J. E.
Beraun
, “
A semiclassical two-temperature model for ultrafast laser heating
,”
Int. J. Heat Mass Transf.
49
,
307
(
2006
).
11.
E. L.
Radue
,
J. A.
Tomko
,
A.
Giri
,
J. L.
Braun
,
X.
Zhou
,
O. V.
Prezhdo
,
E. L.
Runnerstrom
,
J. P.
Maria
, and
P. E.
Hopkins
, “
Hot electron thermoreflectance coefficient of gold during electron–phonon nonequilibrium
,”
ACS Photonics
5
,
4880
(
2018
).
12.
S.
Anisimov
,
B.
Kapeliovich
, and
T.
Perel’Man
, “
Electron emission from metal surfaces exposed to ultrashort laser pulses
,”
Sov. J. Exp. Theor. Phys.
39
,
375
377
(
1974
).
13.
M.
Kaganov
,
I.
Lifshitz
, and
L.
Tanatarov
, “
Relaxation between electrons and the crystalline lattice
,”
Sov. Phys. JETP
4
,
173
(
1957
).
14.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
, “
Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium
,”
Phys. Rev. B
77
,
075133
(
2008
).
15.
P. E.
Hopkins
,
J. C.
Duda
,
B.
Kaehr
,
X. W.
Zhou
,
C. Y.
Peter Yang
, and
R. E.
Jones
, “
Ultrafast and steady-state laser heating effects on electron relaxation and phonon coupling mechanisms in thin gold films
,”
Appl. Phys. Lett.
103
,
211910
(
2013
).
16.
A.
Giri
,
J. T.
Gaskins
,
B. F.
Donovan
,
C.
Szwejkowski
,
R. J.
Warzoha
,
M. A.
Rodriguez
,
J.
Ihlefeld
, and
P. E.
Hopkins
, “
Mechanisms of nonequilibrium electron–phonon coupling and thermal conductance at interfaces
,”
J. Appl. Phys.
117
,
105105
(
2015
).
17.
P. E.
Hopkins
,
J. L.
Kassebaum
, and
P. M.
Norris
, “
Effects of electron scattering at metal-nonmetal interfaces on electron–phonon equilibration in gold films
,”
J. Appl. Phys.
105
,
023710
(
2009
).
18.
P. E.
Hopkins
and
P. M.
Norris
, “
Substrate influence in electron–phonon coupling measurements in thin Au films
,”
Appl. Surf. Sci.
253
,
6289
(
2007
).
19.
J.
Hohlfeld
,
S. S.
Wellershoff
,
J.
Güdde
,
U.
Conrad
,
V.
Jähnke
, and
E.
Matthias
, “
Electron and lattice dynamics following optical excitation of metals
,”
Chem. Phys.
251
,
237
(
2000
).
20.
W.
Wang
and
D. G.
Cahill
, “
Limits to thermal transport in nanoscale metal bilayers due to weak electron–phonon coupling in Au and Cu
,”
Phys. Rev. Lett.
109
,
175503
(
2012
).
21.
B. Y.
Mueller
and
B.
Rethfeld
, “
Nonequilibrium electron–phonon coupling after ultrashort laser excitation of gold
,”
Appl. Surf. Sci.
302
,
24
(
2014
).
22.
K. O.
Aruda
,
M.
Tagliazucchi
,
C. M.
Sweeney
,
D. C.
Hannah
,
G. C.
Schatz
, and
E. A.
Weiss
, “
Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
4212
(
2013
).
23.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
(
1972
).
24.
W.
Lu
and
Y.
Fu
,
Springer Series in Optical Sciences
(
Academic
,
New York
,
2018
), Vol. 215, pp. 159–183.
25.
R. W.
Schoenlein
,
W. Z.
Lin
,
J. G.
Fujimoto
, and
G. L.
Eesley
, “
Femtosecond studies of nonequilibrium electronic processes in metals
,”
Phys. Rev. Lett.
58
,
1680
(
1987
).
26.
T.
Heilpern
,
M.
Manjare
,
A. O.
Govorov
,
G. P.
Wiederrecht
,
S. K.
Gray
, and
H.
Harutyunyan
, “
Determination of hot carrier energy distributions from inversion of ultrafast pump–probe reflectivity measurements
,”
Nat. Commun.
9
,
1853
(
2018
).
27.
A. H.
MacDonald
, “
Electron–phonon enhancement of electron–electron scattering in Al
,”
Phys. Rev. Lett.
44
,
489
(
1980
).
28.
M.
Kaveh
and
N.
Wiser
, “
Electron–electron scattering in conducting materials
,”
Adv. Phys.
33
,
257
(
1984
).
29.
S. D.
Brorson
,
A.
Kazeroonian
,
J. S.
Moodera
,
D. W.
Face
,
T. K.
Cheng
,
E. P.
Ippen
,
M. S.
Dresselhaus
, and
G.
Dresselhaus
, “
Femtosecond room-temperature measurement of the electron–phonon coupling constant in metallic superconductors
,”
Phys. Rev. Lett.
64
,
2172
(
1990
).
30.
J. A.
Tomko
,
E. L.
Runnerstrom
,
Y. S.
Wang
,
W.
Chu
,
J. R.
Nolen
,
D. H.
Olson
,
K. P.
Kelley
,
A.
Cleri
,
J.
Nordlander
,
J. D.
Caldwell
,
O. V.
Prezhdo
,
J. P.
Maria
, and
P. E.
Hopkins
, “
Long-lived modulation of plasmonic absorption by ballistic thermal injection
,”
Nat. Nanotechnol.
16
,
47
(
2021
).
31.
A.
Block
,
M.
Liebel
,
R.
Yu
,
M.
Spector
,
Y.
Sivan
,
F. J.
García De Abajo
, and
N. F.
Van Hulst
, “
Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy
,”
Sci. Adv.
5
,
eaav8965
(
2019
).
32.
K.
Regner
,
L.
Wei
, and
J.
Malen
, “
Interpretation of thermoreflectance measurements with a two-temperature model including non-surface heat deposition
,”
J. Appl. Phys.
118
,
235101
(
2015
).
33.
W. M.
Ibrahim
,
H. E.
Elsayed-Ali
,
C. E.
Bonner
, and
M.
Shinn
, “
Ultrafast investigation of electron dynamics in multi-layer metals
,”
Int. J. Heat Mass Transf.
47
,
2261
(
2004
).
34.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
A. M.
Schwartzberg
,
W. A.
Goddard
, and
H. A.
Atwater
, “
Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles
,”
Phys. Rev. Lett.
118
,
087401
(
2017
).
35.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions for entangled energy bands
,”
Phys. Rev. B: Condens. Matter
65
,
1
(
2002
).
36.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
, and
H. A.
Atwater
, “
Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry
,”
ACS Nano
10
,
957
(
2016
).
37.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
, and
H. A.
Atwater
, “
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
,”
Phys. Rev. B
94
,
075120
(
2016
).
38.
M. N.
Su
,
C. J.
Ciccarino
,
S.
Kumar
,
P. D.
Dongare
,
S. A.
Hosseini Jebeli
,
D.
Renard
,
Y.
Zhang
,
B.
Ostovar
,
W. S.
Chang
,
P.
Nordlander
,
N. J.
Halas
,
R.
Sundararaman
,
P.
Narang
, and
S.
Link
, “
Ultrafast electron dynamics in single aluminum nanostructures
,”
Nano Lett.
19
,
3091
(
2019
).
39.
M. Z.
Mo
,
Z.
Chen
,
R. K.
Li
,
M.
Dunning
,
B. B.
Witte
,
J. K.
Baldwin
,
L. B.
Fletcher
,
J. B.
Kim
,
A.
Ng
,
R.
Redmer
,
A. H.
Reid
,
P.
Shekhar
,
X. Z.
Shen
,
M.
Shen
,
K.
Sokolowski-Tinten
,
Y. Y.
Tsui
,
Y. Q.
Wang
,
Q.
Zheng
,
X. J.
Wang
, and
S. H.
Glenzer
, “
Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction
,”
Science
360
,
1451
(
2018
).
40.
A.
Giri
,
M. V.
Tokina
,
O. V.
Prezhdo
, and
P. E.
Hopkins
, “
Electron–phonon coupling and related transport properties of metals and intermetallic alloys from first principles
,”
Mater. Today Phys.
12
,
100175
(
2020
).
You do not currently have access to this content.