This study presents a structuration approach to reach a high luminous transmittance (Tlum) and solar modulation efficiency (ΔTsol) of thermochromic vanadium dioxide (VO2) thin films. Before starting optical simulations, we confirm that the optical properties of monoclinic VO2 continuous films deposited by reactive magnetron sputtering show a good correspondence with numerical results. Then, calculations on ordered VO2 nanostripes demonstrate an enhanced transmittance due to the presence of vertical openings, leading to a variety of photonic effects. A series of optimizations by varying the column width, period, and film thickness establishes that 20 nm wide and 10 nm separated nanostripes have a ΔTsol of 14.2% and a Tlum of 47.6% for a film thickness of 250 nm. In comparison to a dense film without nanostructuring, the film transparency (related to Tlum) is significantly enhanced, while ΔTsol remains unchanged. Furthermore, this also translates into a favorable, less opaque color, so the geometry could be useful for various thermochromic applications, such as smart windows.

1.
C.
Granqvist
,
P.
Lansaker
,
N.
Mlyuka
,
G.
Niklasson
, and
E.
Avendano
,
Solar Energ. Mater. Solar Cells
93
,
2032
2039
(
2009
).
2.
H.
Kim
,
K.
Cheung
,
R. C. Y.
Auyeung
,
D. E.
Wilson
,
K. M.
Charipar
,
A.
Piqué
, and
N. A.
Charipar
,
Sci. Rep.
9
,
11329
(
2019
).
3.
F.
Morin
,
Phys. Rev. Lett.
3
,
34
36
(
1959
).
4.
D.-P.
Zhang
,
M.-D.
Zhu
,
Y.
Liu
,
K.
Yang
,
G.-X.
Liang
,
Z.-H.
Zheng
,
X.-M.
Cai
, and
P.
Fan
,
J. Alloys Compd.
659
,
198
(
2016
).
5.
Y.
Gao
,
H.
Luo
,
Z.
Zhang
,
L.
Kang
,
Z.
Chen
,
J.
Du
,
M.
Kanehira
, and
C.
Cao
,
Nano Energ.
1
,
221
(
2012
).
6.
C. G.
Granqvist
,
Mater. Today: Proc.
3
,
2
(
2016
).
7.
D.
Lee
,
J.
Lee
,
K.
Song
,
F.
Xue
,
S. Y.
Choi
,
Y.
Ma
,
J.
Podkaminer
,
D.
Liu
,
S. C.
Liu
,
B.
Chung
, and
W.
Fan
,
Nano Lett.
17
,
5614
5619
(
2017
).
8.
B.
Hu
,
Y.
Ding
,
W.
Chen
,
D.
Kulkarni
,
Y.
Shen
,
V. V.
Tsukruk
, and
Z. L.
Wang
,
Adv. Mater.
22
,
5134
5139
(
2010
).
9.
M.
Maaza
,
D.
Hamidi
,
A.
Simo
,
T.
Kerdja
,
A.
Chaudhary
, and
J. K.
Kana
,
Opt. Commun.
285
,
1190
(
2012
).
10.
P.
Jin
,
G.
Xu
,
M.
Tazawa
, and
K.
Yoshimura
,
Jpn. J. Appl. Phys.
41
,
L278
(
2002
).
11.
J.
Zhang
,
J.
Wang
,
C.
Yang
,
H.
Jia
,
X.
Cui
,
S.
Zhao
, and
Y.
Xu
,
Solar Energ. Mater. Solar Cells
162
,
134
(
2017
).
12.
S.
Long
,
X.
Cao
,
G.
Sun
,
N.
Li
,
T.
Chang
,
Z.
Shao
, and
P.
Jin
,
Appl. Surf. Sci.
441
,
764
772
(
2018
).
13.
L.
Kang
,
Y.
Gao
,
H.
Luo
,
Z.
Chen
,
J.
Du
, and
Z.
Zhang
,
ACS Appl. Mater. Interfaces
3
,
135
138
(
2011
).
14.
Y.
Chen
,
X.
Zeng
,
J.
Zhu
,
R.
Li
,
H.
Yao
,
X.
Cao
,
S.
Ji
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
9
,
27784
27791
(
2017
).
15.
J.-H.
Shin
,
K.
Moon
,
E. S.
Lee
,
I.-M.
Lee
, and
K. H.
Park
,
Nanotechnology
26
,
315203
(
2015
).
16.
E. P. J.
Parrott
,
C.
Han
,
F.
Yan
,
G.
Humbert
,
A.
Bessaudou
,
A.
Crunteanu
, and
E.
Pickwell-MacPherson
,
Nanotechnology
27
,
205206
(
2017
).
17.
S. V.
Mutilin
,
V. Y.
Prinz
,
V. A.
Seleznev
, and
L. V.
Yakovkina
,
Appl. Phys. Lett.
113
,
043101
(
2018
).
18.
P.
Bienstman
, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. thesis (Ghent University, 2001).
19.
M. A.
Green
,
Solar Energ. Mater. Solar Cells
92
,
1305
(
2008
).
20.
B. G.
Chae
,
H. T.
Kim
,
S. J.
Yun
,
B. J.
Kim
,
Y.
Lee
,
D. H.
Youn
, and
K. Y.
Kang
,
Electrochem. Solid-State Lett.
9
,
10
(
2006
).
21.
C.
Cheng
,
K.
Liu
,
B.
Xiang
,
J.
Suh
, and
J.
Wu
,
Appl. Phys. Lett.
100
,
103111
(
2012
).
22.
D.
Fu
,
K.
Liu
,
T.
Tao
,
K.
Lo
,
C.
Cheng
,
B.
Liu
,
R.
Zhang
,
H. A.
Bechtel
, and
J.
Wu
,
J. Appl. Phys.
113
,
043707
(
2013
).
23.
A.
Lafort
,
H.
Kebaili
,
S.
Goumri-Said
,
O.
Deparis
,
R.
Cloots
,
J.
De Coninck
,
M.
Voué
,
F.
Mirabella
,
F.
Maseri
, and
S.
Lucas
,
Thin Solid Films
519
,
3283
(
2011
).
24.
Y. Y.
Luo
,
L. Q.
Zhu
,
Y. X.
Zhang
,
S. S.
Pan
,
S. C.
Xu
,
M.
Liu
, and
G. H.
Li
,
J. Appl. Phys.
113
,
183520
(
2013
).
25.
D.
Brassard
,
S.
Fourmaux
,
M.
Jean-Jacques
,
J. C.
Kieffer
, and
M. A. E.
Khakani
,
Appl. Phys. Lett.
87
,
051910
(
2005
).
26.
Y.
Cui
and
S.
Ramanathan
,
J. Vac. Sci. Technol. A
29
,
041502
(
2011
).
27.
G.
Xu
,
P.
Jin
,
M.
Tazawa
, and
K.
Yoshimura
,
Appl. Surf. Sci.
244
,
449
(
2005
).
28.
G.
Fu
,
A.
Polity
,
N.
Volbers
, and
B. K.
Meyer
,
Thin Solid Films
515
,
2519
(
2006
).
29.
E.
Breckenfeld
,
H.
Kim
,
K.
Burgess
,
N.
Charipar
,
S.-F.
Cheng
,
R.
Stroud
, and
A.
Piqué
,
ACS Appl. Mater. Interfaces
9
,
1577
1584
(
2017
).
30.
L.
Fan
,
X.
Wang
,
F.
Wang
,
Q.
Zhang
,
L.
Zhu
,
Q.
Meng
,
B.
Wang
,
Z.
Zhang
, and
C.
Zou
,
RSC Adv.
8
,
19151
(
2018
).
31.
J.
Narayan
and
V. M.
Bhosle
,
J. Appl. Phys.
100
,
103524
(
2006
).
32.
N. R.
Mlyuka
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Phys. Status Solidi A
206
,
2155
2160
(
2009
).
33.
J. I.
Ziegler
,
J.
Nag
, and
R. F.
Haglund
,
Proc. SPIE—Int. Soc. Opt. Eng.
7394
,
73940Q
(
2009
).
34.
V. R.
Almeida
,
Q.
Xu
,
C. A.
Barrios
, and
M.
Lipson
,
Opt. Lett.
29
,
1209
(
2004
).
35.
Y.
Sharma
,
V. A.
Tiruveedhula
,
J. F.
Mut
, and
A.
Dhawan
,
Opt. Express
23
(
5
),
5822
5849
(
2015
).
36.
A.
Taylor
,
I.
Parkin
,
N.
Noor
,
C.
Tummeltshammer
,
M. S.
Brown
, and
I.
Papakonstantinou
,
Opt. Express
21
,
A750
(
2013
).
37.
J.
Schanda
,
International Commission on Illumination
(
Wiley-Interscience
,
2007
), ISBN:978-0-470-04904-4.
38.
Y.
Cui
,
Y.
Ke
,
C.
Liu
,
Z.
Chen
,
N.
Wang
,
L.
Zhang
,
Y.
Zhou
,
S.
Wang
,
Y.
Gao
, and
Y.
Long
,
Joule
2
,
1707
1746
(
2018
).
39.
K.
Sun
,
C. A.
Riedel
,
A.
Urbani
,
M.
Simeoni
,
S.
Mengali
,
M.
Zalkovskij
,
B.
Bilenberg
,
C.
de Groot
, and
O. L.
Muskens
,
ACS Photonics
5
,
2280
2286
(
2012
).
40.
S.
Lee
,
S. H.
Jung
,
D. J.
Kang
, and
J.
Lee
,
RSC Adv.
6
,
5944
(
2016
).
41.
M.
Currie
,
M. A.
Mastro
, and
V. D.
Wheeler
,
Opt. Mater. Express
7
,
1697
(
2017
).
You do not currently have access to this content.