Electronic excitation of an atom by an ion in the energy regime below 20 keV/u can be strongly coupled with elastic scattering. This feature may cause noticeable deviations in the energy loss of light ions such as protons and deuterons from velocity-proportionality and is found to be an essential ingredient in the understanding of the stopping behavior near the threshold. We have incorporated this effect into the PASS stopping code and, in this way, expanded the range of validity of the code down to around 1 keV/u. Comparison of calculated with measured stopping cross sections for protons in Ag, Au, Cu, and Ni shows good agreement with recent data that deviate dramatically from the commonly assumed velocity proportionality. Most of these data were determined by the analysis of reflected-ion spectra. Computation of reflected-ion spectra with energy-loss functions from PASS leads to good agreement with measured spectra. A direct consequence of the coupling with elastic collisions is isotope dependence of the electronic-stopping cross section. Conventional stopping theory denies the existence of a significant isotope effect. Present calculations suggest an effect in the 1–10% range for hydrogen in Si at energies around and below 10 keV/u. This is found to be compatible with experimental data.

1.
J. W.
Mayer
,
L.
Eriksson
, and
J. A.
Davies
,
Ion Implantation in Semiconductors. Silicon and Germanium
(
Academic Press
,
New York
,
1970
).
2.
J.
Lindhard
and
M.
Scharff
,
Phys. Rev.
124
,
128
(
1961
).
3.
J.
Lindhard
,
M.
Scharff
, and
H. E.
Schiøtt
,
Mat. Fys. Medd. Dan. Vid. Selsk.
33
(
14
),
1
(
1963
).
4.
See http://www.srim.org/ for “Particle Interactions with Matter” (2013).
5.
J.
Bang
and
J.
Hansteen
,
Mat. Fys. Medd. Dan. Vid. Selsk.
31
(
13
),
1
(
1959
).
6.
W.
Brandt
,
R.
Laubert
, and
I.
Sellin
,
Phys. Lett.
21
,
518
(
1966
).
7.
O. B.
Firsov
,
Zh. Eksp. Teor. Fiz.
36
,
1517
(
1959
) [Sov. Phys. JETP 9, 1076–1080 (1959)].
8.
Y. A.
Teplova
,
V. S.
Nikolaev
,
I. S.
Dimitriev
, and
L. N.
Fateeva
,
Zh. Eksp. Teor. Fiz.
42
,
44
(
1962
) [Sov. Phys. JETP 15, 31–41 (1962)].
9.
N.
Bohr
,
Mat. Fys. Medd. Dan. Vid. Selsk.
18
(
8
),
1
(
1948
).
10.
P.
Sigmund
, Particle Penetration and Radiation Effects Volume 2, Springer Series in Solid State Sciences Vol. 179 (Springer, Heidelberg, 2014).
11.
P.
Sigmund
and
A.
Schinner
,
Eur. Phys. J. D
12
,
425
(
2000
).
12.
P.
Sigmund
and
A.
Schinner
,
Nucl. Instrum. Methods Phys. Res., Sect. B
195
,
64
(
2002
).
14.
P.
Sigmund
and
A.
Schinner
,
Nucl. Instrum. Methods Phys. Res., Sect. B
382
,
15
(
2016
).
15.
G.
Lapicki
,
R.
Laubert
, and
W.
Brandt
,
Phys. Rev. A
22
,
1889
(
1980
).
16.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley Press
,
Cambridge, MA
,
1953
).
17.
A.
Schinner
and
P.
Sigmund
,
Eur. Phys. J. D
56
,
41
(
2010
).
18.
A.
Schinner
and
P.
Sigmund
,
Nucl. Instrum. Methods Phys. Res., Sect. B
460
,
19
(
2019
).
19.
D. S.
Karpuzov
,
Appl. Phys.
24
,
121
(
1981
).
20.
L. M.
Kishinevskii
,
Izv. Akad. Nauk SSSR
26
,
1410
(
1962
) [Bull. Acad. Sci. USSR Phys. Ser. 20, 1433–1438 (1963)].
21.
I.
Abril
,
J. C.
Moreno-Marin
,
J. M.
Fernandez-Varea
,
C. D.
Denton
,
S.
Heredia-Avalos
, and
R.
Garcia-Molina
,
Nucl. Instrum. Methods Phys. Res., Sect. B
256
,
172
(
2007
).
22.
P.
Sigmund
and
A.
Schinner
,
Nucl. Instrum. Methods Phys. Res., Sect. B
410
,
78
(
2017
).
23.
J.
Lindhard
,
Mat. Fys. Medd. Dan. Vid. Selsk.
28
(
8
),
1
(
1954
).
24.
A.
Schinner
and
P.
Sigmund
, “DPASS Stopping Code,” 2020, see www.sdu.dk/DPASS.
25.
See https://www-nds.iaea.org/stopping/ for “Electronic Stopping Power of Matter for Ions” (2020).
26.
D.
Goebl
,
D.
Roth
, and
P.
Bauer
,
Phys. Rev. A
87
,
062903
(
2013
).
27.
S. N.
Markin
,
D.
Primetzhofer
,
S.
Prusa
,
M.
Brunmayr
,
G.
Kowarik
,
F.
Aumayr
, and
P.
Bauer
,
Phys. Rev. B
78
,
195122
(
2008
).
28.
S. N.
Markin
,
D.
Primetzhofer
, and
P.
Bauer
,
Phys. Rev. Lett.
103
,
113201
(
2009
).
29.
S. N.
Markin
,
D.
Primetzhofer
,
M.
Spitz
, and
P.
Bauer
,
Phys. Rev. B
80
,
205105
(
2009
).
30.
S. P.
Møller
,
A.
Csete
,
T.
Ichioka
,
H.
Knudsen
,
U. I.
Uggerhøj
, and
H. H.
Andersen
,
Phys. Rev. Lett.
88
,
193201
(
2002
).
31.
B.
Bruckner
,
D.
Roth
,
D.
Goebl
,
P.
Bauer
, and
D.
Primetzhofer
,
Nucl. Instrum. Methods Phys. Res., Sect. B
423
,
82
(
2018
).
32.
E. D.
Cantero
,
G. H.
Lantschner
,
J. C.
Eckhardt
, and
N. R.
Arista
,
Phys. Rev. A
80
,
032904
(
2009
).
33.
ICRU
, “Stopping powers and ranges for protons and alpha particles,” International Commission of Radiation Units and Measurements, Report No. ICRU-49, Bethesda, MD, 1993.
34.
S.
Heredia-Avalos
,
I.
Abril
,
C. D.
Denton
,
J. C.
Moreno-Marin
, and
R.
Garcia-Molina
,
J. Phys. B
19
,
466205
(
2007
).
35.
C. D.
Denton
,
I.
Abril
,
R.
Garcia-Molina
,
J. C.
Moreno-Marin
, and
S.
Heredia-Avalos
,
Surf. Interface Anal.
40
,
1481
(
2008
).
36.
C. C.
Montanari
,
D. M.
Mitnik
,
C. D.
Archubi
, and
J. E.
Miraglia
,
Phys. Rev. A
80
,
012901
(
2009
).
37.
C. C.
Montanari
and
J. E.
Miraglia
, in Theory of Heavy Ion Collision Physics in Hadron Therapy, Advances in Quantum Chemistry Vol. 65 (Elsevier, 2013), p. 165.
38.
M. A.
Zeb
,
J.
Kohanoff
,
D.
Sánchez-Portal
,
A.
Arnau
,
J. I.
Juaristi
, and
E.
Artacho
,
Phys. Rev. Lett.
108
,
225504
(
2012
).
39.
P.
Bauer
,
Nucl. Instrum. Methods Phys. Res., Sect. B
27
,
301
(
1987
).
40.
V. I.
Shulga
,
A.
Schinner
, and
P.
Sigmund
,
Nucl. Instrum. Methods Phys. Res., Sect. B
467
,
91
(
2020
).
41.
42.
V. I.
Shulga
and
W.
Eckstein
,
Nucl. Instrum. Methods Phys. Res., Sect. B
145
,
492
(
1998
).
43.
44.
N.
Shiomi-Tsuda
,
N.
Sakamoto
, and
R.
Ishiwari
,
Nucl. Instrum. Methods Phys. Res., Sect. B
93
,
391
(
1994
).
45.
H.
Bichsel
and
M.
Inokuti
,
Nucl. Instrum. Methods Phys. Res., Sect. B
134
,
161
(
1998
).
46.
R.
Cabrera-Trujillo
,
Nucl. Instrum. Methods Phys. Res., Sect. B
149
,
228
(
1999
).
47.
G.
Konac
,
S.
Kalbitzer
,
C.
Klatt
,
D.
Niemann
, and
R.
Stoll
,
Nucl. Instrum. Methods Phys. Res., Sect. B
138
,
159
(
1998
).
48.
In an attempt to verify this statement, we requested the latest version of the CasP stopping code,49 which has appeared after submission of this paper. Unlike previous editions of this code, the low-energy output compares well with the experimental data. Thus, CasP6.0 is an exception.
49.
See http://www.casp-program.org/ for “CasP Version 6.0” (2021).
50.
Y. V.
Gott
and
V. G.
Telkovsky
,
Fiz. Tverd. Tela
9
,
2221
(
1967
) [Sov. Phys. Solid State 9, 1741–1744 (1968)].
51.
J. E.
Valdés
,
C.
Agurto
,
F.
Ortega
,
P.
Vargas
,
R.
Labbé
, and
N.
Arista
,
Nucl. Instrum. Methods Phys. Res., Sect. B
164–165
,
268
(
2000
).
52.
E. P.
Arkhipov
and
Y. V.
Gott
,
Sov. Phys. JETP-USSR
29
,
615
(
1969
).
53.
J. E.
Valdés
,
J. C.
Eckardt
,
G. H.
Lantschner
, and
N. R.
Arista
,
Phys. Rev. A
49
,
1083
(
1994
).
You do not currently have access to this content.