The streamer discharge occurring on the surface of a conductor in rain is one of the critical problems associated with the design of high voltage direct current (HVDC) transmission lines. In this paper, the streamer discharges on the conductor surface in the presence of raindrops at atmospheric pressure are studied by use of two-dimensional particle-in-cell simulations with Monte Carlo collisions included. The influences of the drop angles, volumes, and spatial distributions of raindrops on the development of streamer discharges have been demonstrated. The formation of streamer discharges and the involved electric fields, plasma densities, propagation velocities, and discharge currents are presented. It is found that the discharge intensity decreases significantly with an increasing of the drop angle. The dividing point at the 95° angle is suggested. With an increase of the raindrop volume and the distance of raindrops, strong discharges with the advanced discharge time, faster propagation velocity, larger electric field, and higher plasma density are initiated. Moreover, the electron energy probability functions of different discharges have been studied, which are nonequilibrium and reveal kinetic behavior of the discharges. The simulation results, which are qualitatively in agreement with the previous experimental observations, bring new insight into the discharge dynamics and provide useful references for the protection of HVDC transmission lines in rainy days.

1.
L.
Chen
,
X. M.
Bian
,
L.
Wang
, and
Z.
Guan
,
Jpn. J. Appl. Phys.
51
,
09MG02
(
2012
).
2.
Y. F.
Guan
,
R. S.
Vaddi
,
A.
Aliseda
, and
I.
Novosselov
,
Phys. Plasmas
25
,
083507
(
2018
).
3.
X. C.
Zhang
,
Y. P.
Cao
,
W. L.
Fan
, and
T. J.
Ci
,
AIP Adv.
8
,
115129
(
2018
).
4.
X. C.
Zhang
,
F.
Wang
,
A. Q.
Li
, and
W. L.
Fan
,
IEEE Trans. Plasma Sci.
48
,
2846
(
2020
).
5.
P.
Bruggeman
,
L.
Graham
,
J.
Degroote
,
J.
Vierendeels
, and
C.
Leys
,
J. Phys. D: Appl. Phys.
40
,
4779
(
2007
).
6.
C.
Stamatopoulos
,
P.
Bleuler
,
M.
Pfeiffer
,
S.
Hedtke
,
P.
Rudolf von Rohr
, and
C. M.
Franck
,
Langmuir
35
,
4876
(
2019
).
7.
Y. F.
Zhu
,
Y.
Wu
,
B.
Wei
,
H. J.
Xu
,
H.
Liang
,
M.
Jia
,
H. M.
Song
, and
Y. H.
Li
,
J. Phys. D: Appl. Phys.
53
,
145205
(
2020
).
8.
Q.
Li
,
S. M.
Rowland
,
I.
Dupere
, and
R. S.
Morris
,
IEEE Trans. Power Delivery
33
,
2428
(
2018
).
9.
G.
Neretti
,
M.
Taglioli
,
G.
Colonna
, and
C. A.
Borghi
,
Plasma Sources Sci. Technol.
26
, 015013 (
2017
).
10.
P. Y.
Wang
,
C.
Li
,
M.
Zhang
,
J. W.
Li
,
Z.
Liu
,
Y.
Yang
,
K. X.
Yu
, and
Y.
Pan
,
Plasma Sources Sci. Technol.
29
,
045005
(
2020
).
11.
Z. L.
Zhang
,
J.
Shen
,
C.
Cheng
,
Z. M.
Xu
, and
W. D.
Xia
,
Plasma Sci. Technol.
20
,
044009
(
2018
).
12.
G.
Taylor
,
Proc. Roy. Soc. A
280
,
383
(
1964
).
13.
S.
Hedtke
,
P. F.
Xu
,
M.
Pfeiffer
,
B.
Zhang
,
J. L.
He
, and
C. M.
Franck
,
IEEE Trans. Power Delivery
35
,
1038
(
2020
).
14.
P. F.
Xu
,
B.
Zhang
,
Z. Z.
Wang
,
S. M.
Chen
, and
J. L.
He
,
J. Phys. D: Appl. Phys.
50
,
085201
(
2017
).
15.
P. F.
Xu
,
B.
Zhang
,
Z. Z.
Wang
,
S. M.
Chen
, and
J. L.
He
,
J. Phys. D: Appl. Phys.
50
,
505206
(
2017
).
16.
M.
Pfeiffer
and
C. M.
Franck
,
IEEE Trans. Power Delivery
30
,
2284
(
2015
).
17.
M.
Pfeiffer
,
T.
Schultz
,
S.
Hedtke
, and
C. M.
Franck
,
J. Electrostat.
79
,
45
(
2016
).
18.
Q.
Hu
,
G. H.
He
,
L. C.
Shu
,
X. L.
Jiang
,
Y. Q.
Liu
,
Y. F.
Li
,
H. D.
Peng
, and
W. W.
Wu
,
IET Gener. Transm. Distrib.
12
,
1783
(
2018
).
19.
K.
Nakai
,
A.
Komuro
, and
H.
Nishida
,
Phys. Plasmas
27
,
063518
(
2020
).
20.
C.
Nieter
and
J. R.
Cary
,
J. Comput. Phys.
196
,
448
(
2004
).
21.
J. G.
Hwang
,
M.
Zahn
, and
L. A. A.
Pettersson
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
162
(
2012
).
22.
J.
Jadidian
,
M.
Zahn
,
N.
Lavesson
,
O.
Widlund
, and
K.
Borg
,
IEEE Trans. Plasma Sci.
40
,
909
(
2012
).
23.
J.
Diamond
,
A.
Hamdan
,
J.
Profili
, and
J.
Margot
,
J. Phys. D: Appl. Phys.
53
,
425209
(
2020
).
24.
L. H.
Kong
,
W. Z.
Wang
,
A. B.
Murphy
, and
G. Q.
Xia
,
J. Phys. D: Appl. Phys.
50
,
165203
(
2017
).
25.
J.
Teunissen
and
U.
Ebert
,
Plasma Sources Sci. Technol.
25
,
044005
(
2016
).
26.
A.
Luque
and
U.
Ebert
,
Phys. Rev. E
84
,
046411
(
2011
).
27.
D.
Levko
and
L. L.
Raja
,
Phys. Plasmas
23
,
043502
(
2016
).
28.
M.
Jiang
,
Y. D.
Li
,
H. G.
Wang
,
W. D.
Ding
, and
C. L.
Liu
,
Plasma Sources Sci. Technol.
29
,
015020
(
2020
).
29.
H. Y.
Sun
,
B. X.
Lu
,
M.
Wang
,
Q. F.
Guo
, and
Q. K.
Feng
,
Phys. Plasmas
24
,
103506
(
2017
).
30.
J. G.
Gu
,
Y.
Zhang
,
M. X.
Gao
,
H. Y.
Wang
,
Q. Z.
Zhang
,
L.
Yi
, and
W.
Jiang
,
J. Appl. Phys.
125
,
153303
(
2019
).
31.
R. X.
Xiong
,
P.
Zhao
,
H. Y.
Wang
,
Y.
Zhang
, and
W.
Jiang
,
J. Phys. D: Appl. Phys.
53
,
185202
(
2020
).
32.
Y.
Zhu
,
K.
Haji
,
M.
Otsubo
,
C.
Honda
, and
N.
Hayashi
,
J. Phys. D: Appl. Phys.
39
,
1970
(
2006
).
33.
X. Y.
Chen
,
W. L.
He
,
X. Y.
Du
,
X. Q.
Yuan
,
L.
Lan
,
X. S.
Wen
, and
B. Q.
Wan
,
Phys. Plasmas
25
,
063525
(
2018
).
34.
P. F.
Xu
,
B.
Zhang
,
S. M.
Chen
, and
J. L.
He
,
Phys. Plasmas
23
,
063511
(
2016
).
35.
G. J. M.
Hagelaar
,
Plasma Sources Sci. Technol.
25
,
015015
(
2016
).
36.
A. L.
Likhanskii
, “Particle-in-cell modeling of the pulsed DBD plasma actuator,” AIAA Paper No. 2010-5101, 2010.
37.
Y.
Itikawa
and
N.
Mason
,
J. Phys. Chem. Ref. Data
34
,
1
(
2005
).
38.
S.
Pancheshnyi
,
S.
Biagi
,
M. C.
Bordage
,
G. J. M.
Hagelaar
,
W. L.
Morgan
,
A. V.
Phelps
, and
L. C.
Pitchford
,
Chem. Phys.
398
,
148
(
2012
).
39.
Y.
Zhang
,
H. Y.
Wang
,
Y. R.
Zhang
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
26
,
054002
(
2017
).
40.
H. Y.
Huang
,
Y.
Hu
, and
F.
Xue
,
IET Sci. Meas. Technol.
13
,
447
(
2019
).
41.
J. Y.
Xu
,
P.
Xu
,
Q.
Zhang
,
X.
Cui
,
X. M.
Bian
,
T. B.
Lu
, and
H. B.
Li
,
Sci. China Technol. Sci.
61
,
1197
(
2018
).
You do not currently have access to this content.