An electrostatic spray (ES) of liquids is a simple way to generate microdroplets with a high surface-to-volume ratio. The ES generated by electrical discharges enables a fast transfer of reactive species from plasma into the liquid for an efficient generation of plasma-activated water. Here, we present a relatively simple, versatile, and cost-effective diagnostic technique for online monitoring of ES microdroplets which enables simultaneous and synchronized electrical and optical diagnostics of an electrical discharge. This technique is based on planar laser light attenuation monitored by a large area photo-detector covered by a slit. Two variants were tested and compared—one with two lasers and another with one laser and a broadband LED lamp. This technique enables estimations of the speed and size of microdroplets (down to ∼10 μm) and allows for monitoring the dripping frequency or studying fragmentation of microdroplets and water filaments. The ES characteristics obtained by this technique were successfully verified by ultra-high-speed camer:a imaging.

1.
G.
Taylor
,
Proc. R. Soc. London A
280
,
383
397
(
1964
).
2.
M.
Cloupeau
and
B.
Prunet-Foch
,
J. Electrostat.
25
,
165
184
(
1990
).
3.
R. P. A.
Hartman
,
D. J.
Brunner
,
D. M. A.
Camelot
,
J. C. M.
Marijnissen
, and
B.
Scarlett
,
J. Aerosol Sci.
31
,
65
95
(
2000
).
4.
L.
Rayleigh
,
Philos. Mag.
14
,
184
186
(
1882
).
5.
K. Y.
Li
,
H.
Tu
, and
A. K.
Ray
,
Langmuir
21
,
3786
3794
(
2005
).
6.
J.
Zeleny
,
Phys. Rev.
3
,
69
91
(
1914
).
7.
J.
Zeleny
,
Phys. Rev.
10
,
1
6
(
1917
).
8.
A. K.
Ball
,
S. S.
Roy
,
D. R.
Kisku
,
N. C.
Murmu
, and
C.
LdS
,
Appl. Soft Comput. J.
94
,
106438
(
2020
).
9.
S.
Kim
,
M.
Jung
,
S.
Choi
,
J.
Lee
,
J.
Lim
, and
M.
Kim
,
Exp. Thermal Fluid Sci.
118
,
110151
(
2020
).
10.
Y.
Kim
,
S.
Jung
,
S.
Kim
,
S. T.
Choi
,
M.
Kim
, and
H.
Lee
,
Int. Commun. Heat Mass Transfer
118
,
104861
(
2020
).
11.
J.-P.
Borra
,
J. Aerosol Sci.
125
,
208
236
(
2018
).
12.
J.
Rosell-Llompart
,
J.
Grifoll
, and
I.
Loscertales
,
J. Aerosol Sci.
125
,
2
31
(
2018
).
13.
A.
Jaworek
,
A. M.
Gañán-Calvo
, and
Z.
Machala
,
J. Phys. D: Appl. Phys.
52
,
233001
(
2019
).
14.
P.
Dwivedi
,
L. M.
Matz
,
D. A.
Atkinson
, and
H. H.
Hill
, Jr.
,
Analyst
129
,
139
144
(
2004
).
15.
A.
Jaworek
,
A. T.
Sobczyk
, and
A.
Krupa
,
J. Aerosol Sci.
125
,
57
92
(
2018
).
16.
A.
Jaworek
,
J. Mater. Sci.
42
,
266
297
(
2007
).
17.
H.
Cui
,
N.
Li
,
J.
Peng
,
J.
Cheng
,
N.
Zhang
, and
Z.
Wu
,
Build. Environ.
111
,
218
227
(
2017
).
18.
C.
Carotenuto
,
F.
Di Natale
, and
A.
Lancia
,
Chem. Eng. J.
165
,
35
45
(
2010
).
19.
Z.
Machala
,
B.
Tarabova
,
K.
Hensel
,
E.
Spetlikova
,
L.
Sikurova
, and
P.
Lukes
,
Plasma Proc. Polym.
10
,
649
659
(
2013
).
20.
S. K.
Boda
,
X.
Li
, and
J.
Xie
,
J. Aerosol Sci.
125
,
164
181
(
2018
).
21.
J. M.
López-Herrera
,
A.
Barrero
,
A.
Boucard
,
I. G.
Loscertales
, and
M.
Márquez
,
J. Am. Soc. Mass Spectrom.
15
,
253
259
(
2004
).
22.
M.
Cloupeau
and
B.
Prunet-Foch
,
J. Electrostat.
22
,
135
159
(
1989
).
23.
K.
Tang
and
A.
Gomez
,
J. Colloid Interface Sci.
175
,
326
332
(
1995
).
24.
P.
Borra J
,
P.
Ehouarn
, and
D.
Boulaud
,
J. Aerosol Sci.
35
,
1313
1332
(
2004
).
25.
N.
Puač
,
M.
Gherardi
, and
M.
Shiratani
,
Plasma Process. Polym.
15
,
1700174
(
2018
).
26.
R.
Thirumdas
,
A.
Kothakota
,
U.
Annapure
,
K.
Siliveru
,
R.
Blundell
,
R.
Gatt
, and
V. P.
Valdramidis
,
Trends Food Sci. Technol.
77
,
21
31
(
2018
).
27.
J. L.
Brisset
and
J.
Pawlat
,
Plasma Chem. Plasma Process.
36
,
355
381
(
2016
).
28.
Z.
Machala
,
B.
Tarabová
,
D.
Sersenová
,
M.
Janda
, and
K.
Hensel
,
J. Phys. D: Appl. Phys.
52
,
034002
(
2019
).
29.
N. K.
Kaushik
,
B.
Ghimire
,
Y.
Li
 et al,
Biol. Chem.
400
,
39
62
(
2018
).
30.
J.
Kruszelnicki
,
A. M.
Lietz
, and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
52
,
355207
(
2019
).
31.
G.
Oinuma
,
G.
Nayak
,
Y.
Du
, and
P. J.
Bruggeman
,
Plasma Sources Sci. Technol.
29
,
095002
(
2020
).
32.
R.
Burlica
,
R. G.
Grim
,
K.-Y.
Shih
,
D.
Balkwill
, and
B. R.
Locke
,
Plasma Process. Polym.
7
,
640
649
(
2010
).
33.
I. L.
Kanev
,
A. Y.
Mikheev
,
Y. M.
Shlyapnikov
,
E. A.
Shlyapnikova
,
T. Y.
Morozova
, and
V. N.
Morozov
,
Anal. Chem.
86
,
1511
1517
(
2014
).
34.
Z.
Kovalova
,
M.
Leroy
,
M. J.
Kirkpatrick
,
E.
Odic
, and
Z.
Machala
,
Bioelectrochemistry
112
,
91
99
(
2016
).
35.
H.-H.
Kim
,
J.-H.
Kim
, and
A.
Ogata
,
J. Aerosol Sci.
42
,
249
263
(
2011
).
36.
B.
Pongrác
,
H. H.
Kim
,
M.
Janda
,
V.
Martišovitš
, and
Z.
Machala
,
J. Phys. D: Appl. Phys.
47
,
315202
(
2014
).
37.
A. K.
Ball
,
R.
Das
,
D.
Das
,
S. S.
Roy
, and
N. C.
Murmu
,
Mater. Today: Proc.
5
,
7355
7362
(
2018
).
38.
M.
Parhizkar
,
P. J. T.
Reardon
,
J. C.
Knowles
,
R. J.
Browning
,
E.
Stride
,
R. B.
Pedley
,
T.
Grego
, and
M.
Edirisinghe
,
Mater. Des.
126
,
73
84
(
2017
).
39.
A.
Kleitz
and
J. M.
Dorey
,
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
218
,
811
842
(
2004
).
40.
I.
Bosdas
,
M.
Mansour
,
A. I.
Kalfas
, and
R. S.
Abhari
,
Meas. Sci. Technol.
27
,
015204
(
2016
).
41.
X.
Cai
,
D.
Ning
,
J.
Yu
 et al,
Proc. Inst. Mech. Eng. Part A: J. Power Energy
228
(
2
),
153
167
(
2014
).
42.
L.
De Juan
and
J.
Fernández De La Mora
,
J. Colloid Interface Sci.
186
,
280
293
(
1997
).
43.
M. E.
Hassan
,
M.
Janda
, and
Z.
Machala
,
Water
13
,
182
(
2021
).
44.
V.
Mitra
,
A.
Sarma
,
M. S.
Janaki
,
A. N.
Sekar Iyengar
,
B.
Sarma
,
N.
Marwan
,
J.
Kurths
,
P.
Kumar Shaw
,
D.
Saha
, and
S.
Ghosh
,
Chaos, Solitons Fractals
69
,
285
293
(
2014
).
45.
P.
Ehouarn
,
L.
Unger
, and
J. P.
Borra
,
High Temp. Mater. Process.
5
(
3
),
333
344
(
2001
).
You do not currently have access to this content.