In conventional time-resolved laser-induced incandescence (TiRe-LII) measurements, a laser pulse heats the nanoparticles within a probe volume of aerosol, and the particle size distribution and other characteristics are inferred from the observed incandescence decay rate, which is connected to the change in sensible energy through a spectroscopic model. There is strong evidence, however, that for some aerosol systems, the incandescence signal is contaminated with other non-incandescent emission sources. Recent TiRe-LII measurements on polydisperse aerosolized silver and gold nanoparticles energized with a 1064 nm laser pulse exhibit broadband emission that is temporally aligned with the temporal profile of the laser pulse, suggesting that the signal is due to non-thermal emission. One candidate for this emission phenomenon is multiphoton-induced upconversion luminescence, in which the conduction-band electron gas is heated up to an effective lattice temperature, resulting in luminescence due to high-energy intraband transitions.

1.
K.
Daun
,
J.
Menser
,
R.
Mansmann
,
S. T.
Moghaddam
,
T.
Dreier
, and
C.
Schulz
,
J. Quant. Spectrosc. Radiat. Transfer
197
,
3
(
2017
).
2.
S. K.
Sahoo
,
S.
Parveen
, and
J. J.
Panda
,
Nanomedicine
3
,
20
(
2007
).
3.
T. L.
Thiem
,
Y.-I. I.
Lee
, and
J.
Sneddon
,
Lasers in Atomic Spectroscopy Selected Applications
(
Elsevier B.V.
,
1992
), pp.
1
35
.
4.
M. A.
Maurer-Jones
,
I. L.
Gunsolus
,
C. J.
Murphy
, and
C. L.
Haynes
,
Anal. Chem.
85
,
3036
3049
(
2013
).
5.
6.
R. W.
Weeks
and
W. W.
Duley
,
J. Appl. Phys.
45
,
4661
(
1974
).
7.
H. A.
Michelsen
,
C.
Schulz
,
G. J.
Smallwood
, and
S.
Will
,
Prog. Energy Combust. Sci.
51
,
2
(
2015
).
8.
S.
Talebi Moghaddam
and
K. J.
Daun
,
Appl. Phys. B
124
,
159
(
2018
).
9.
S.
Talebi-Moghaddam
,
T. A.
Sipkens
, and
K. J.
Daun
,
Appl. Phys. B
125
,
214
(
2019
).
10.
T. A.
Sipkens
,
N. R.
Singh
, and
K. J.
Daun
,
Appl. Phys. B
123
,
14
(
2017
).
11.
C.
Schulz
,
B. F.
Kock
,
M.
Hofmann
,
H.
Michelsen
,
S.
Will
,
B.
Bougie
,
R.
Suntz
, and
G.
Smallwood
,
Appl. Phys. B
83
,
333
(
2006
).
12.
M. K.
Case
and
D. L.
Hofeldt
,
Aerosol Sci. Technol.
25
,
46
(
1996
).
13.
C. R.
Shaddix
and
K. C.
Smyth
,
Combust. Flame
107
,
418
(
1996
).
14.
P.-E.
Bengtsson
and
M.
Alden
,
Appl. Phys. B
60
,
51
(
1995
).
15.
R.
Vander Wal
and
K. J.
Weiland
,
Appl. Phys. B
59
,
445
(
1994
).
16.
B.
Quay
,
T.-W.
Lee
,
T.
Ni
, and
R. J.
Santoro
,
Combust. Flame
97
,
384
(
1994
).
17.
K. J.
Daun
,
Int. J. Heat Mass Transfer
52
,
5081
(
2009
).
18.
R. L.
Vander Wal
,
T. M.
Ticich
, and
J. R.
West
,
Appl. Opt.
38
,
5867
(
1999
).
19.
Y.
Murakami
,
T.
Sugatani
, and
Y.
Nosaka
,
J. Phys. Chem. A
109
,
8994
(
2005
).
20.
B. F.
Kock
,
C.
Kayan
,
J.
Knipping
,
H. R.
Orthner
, and
P.
Roth
,
Proc. Combust. Inst.
30
,
1689
(
2005
).
21.
A.
Eremin
,
E.
Gurentsov
, and
C.
Schulz
,
J. Phys. D: Appl. Phys.
41
,
055203
(
2008
).
22.
E. V.
Gurentsov
and
A. V.
Eremin
,
High Temp.
49
,
667
(
2011
).
23.
J.
Menser
,
K.
Daun
,
T.
Dreier
, and
C.
Schulz
,
Appl. Phys. B
122
,
277
(
2016
).
24.
S.
Maffi
,
F.
Cignoli
,
C.
Bellomunno
,
S.
De Iuliis
, and
G.
Zizak
,
Spectrochim. Acta, Part B
63
,
202
(
2008
).
25.
I. S.
Altman
,
D.
Lee
,
J. D.
Chung
,
J.
Song
, and
M.
Choi
,
Phys. Rev. B
63
,
161402
(
2001
).
26.
S.
Musikhin
,
P.
Fortugno
,
J. C.
Corbin
,
G. J.
Smallwood
,
T.
Dreier
,
K. J.
Daun
, and
C.
Schulz
,
Carbon
167
,
870
880
(
2020
).
27.
A.
Eremin
,
E.
Gurentsov
,
E.
Popova
, and
K.
Priemchenko
,
Appl. Phys. B
104
,
285
(
2011
).
28.
K. J.
Daun
,
G. J.
Smallwood
, and
F.
Liu
,
J. Heat Transfer
130
,
121201
(
2008
).
29.
A. V.
Filippov
,
M. W.
Markus
, and
P.
Roth
,
J. Aerosol Sci.
30
,
71
(
1999
).
30.
P. C.
Lee
and
D.
Meisel
,
J. Phys. Chem.
86
,
3391
(
1982
).
31.
A. K.
Thottoli
and
A. K. A.
Unni
,
J. Nanostruct. Chem.
3
,
56
(
2013
).
32.
G. W.
Shan Hu
,
F.
Gu
,
M.
Chen
,
C.
Wang
,
J.
Li
, and
J.
Yang
,
Sci. Rep.
10
(
1
),
1
9
(
2020
).
33.
Z. M.
Sui
,
X.
Chen
,
L. Y.
Wang
,
L. M.
Xu
,
W. C.
Zhuang
,
Y. C.
Chai
, and
C. J.
Yang
,
Phys. E
33
,
308
(
2006
).
34.
D. R.
Snelling
,
G. J.
Smallwood
,
F.
Liu
,
ÖL
Gülder
, and
W. D.
Bachalo
,
Appl. Opt.
44
,
6773
(
2005
).
35.
D. B.
Blackford
and
G. R.
Simons
,
Part. Part. Syst. Charact.
4
,
112
(
1987
).
36.
S. S. T.
Selvi
,
J. M.
Linet
, and
S.
Sagadevan
,
J. Exp. Nanosci.
13
,
130
(
2018
).
37.
K. M.
McPeak
,
S. V.
Jayanti
,
S. J.
Kress
,
S.
Meyer
,
S.
Iotti
,
A.
Rossinelli
, and
D. J.
Norris
,
ACS Photonics
2
,
326
(
2015
).
38.
T. A.
Sipkens
,
N. R.
Singh
, and
K. J.
Daun
,
Appl. Phys. B
123
,
14
(
2017
).
39.
H.
Suzuki
and
S.
I-Yin
,
Int. J. Phys. Sci.
3
(
1
),
38
41
(
2008
).
40.
S.
Talebi Moghaddam
,
H.
Ertürk
, and
M. P.
Mengüç
,
J. Quant. Spectrosc. Radiat. Transfer
178
,
124
(
2016
).
41.
S.
Talebi Moghaddam
,
D.
Avşar
,
H.
Ertürk
, and
M.
Pınar Mengüç
,
J. Quant. Spectrosc. Radiat. Transfer
197
,
106
(
2017
).
42.
T. A.
Sipkens
and
K. J.
Daun
,
Opt. Express
25
,
5684
(
2017
).
43.
J.
Menser
,
K.
Daun
,
T.
Dreier
, and
C.
Schulz
,
Appl. Opt.
56
,
E50
(
2017
).
44.
J.
Park
,
I.
Henins
,
H. W.
Herrmann
, and
G. S.
Selwyn
,
Phys. Plasmas
7
,
3141
(
2000
).
46.
B. Y.
Mueller
and
B.
Rethfeld
,
Phys. Rev. B
87
,
035139
(
2013
).
47.
C.
Frischkorn
and
M.
Wolf
,
Chem. Rev.
106
,
4207
(
2006
).
48.
S. A.
Maier
,
Plasmonics Fundamentals and Applications
(
Springer Science & Business Media
,
2007
).
49.
S.
De Iuliis
,
R.
Dondè
, and
I.
Altman
,
J. Quant. Spectrosc. Radiat. Transfer
258
,
107353
(
2021
).
50.
A.
Mooradian
,
Phys. Rev. Lett.
22
,
185
(
1969
).
51.
M.
Eichelbaum
,
B. E.
Schmidt
,
H.
Ibrahim
, and
K.
Rademann
,
Nanotechnology
18
,
355702
(
2007
).
52.
V. P.
Drachev
,
E. N.
Khaliullin
,
W.
Kim
,
F.
Alzoubi
,
S. G.
Rautian
,
V. P.
Safonov
,
R. L.
Armstrong
, and
V. M.
Shalaev
,
Phys. Rev. B
69
,
035318
(
2004
).
53.
J.
Mertens
,
M. E.
Kleemann
,
R.
Chikkaraddy
,
P.
Narang
, and
J. J.
Baumberg
,
Nano Lett.
17
,
2568
(
2017
).
54.
M.
Pattabi
and
R. M.
Pattabi
,
Nano Hybrids
6
,
1
(
2014
).
55.
X.
Yuan
,
Z.
Luo
,
Y.
Yu
,
Q.
Yao
, and
J.
Xie
,
Chem.: Asian J.
8
,
858
(
2013
).
56.
J.
Zheng
and
R. M.
Dickson
,
J. Am. Chem. Soc.
124
,
13982
(
2002
).
57.
T.
Huang
and
R. W.
Murray
,
J. Phys. Chem. B
107
,
7434
(
2003
).
58.
J. T.
Hugall
and
J. J.
Baumberg
,
Nano Lett.
15
,
2600
(
2015
).
59.
X.
Xie
and
D. G.
Cahill
,
Appl. Phys. Lett.
109
,
183104
(
2016
).
60.
J. P.
Wilcoxon
,
J. E.
Martin
,
F.
Parsapour
,
B.
Wiedenman
, and
D. F.
Kelley
,
J. Chem. Phys.
108
,
9137
(
1998
).
61.
L.
Roloff
,
P.
Klemm
,
I.
Gronwald
,
R.
Huber
,
J. M.
Lupton
, and
S.
Bange
,
Nano Lett.
17
,
7914
(
2017
).
62.
T.
Haug
,
P.
Klemm
,
S.
Bange
, and
J. M.
Lupton
,
Phys. Rev. Lett.
115
,
067403
(
2015
).
63.
C.
Kittel
,
P.
McEuen
, and
P.
McEuen
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1996
), Vol. 8.
64.
G. T.
Boyd
,
Z. H.
Yu
, and
Y. R.
Shen
,
Phys. Rev. B
33
,
7923
(
1986
).
You do not currently have access to this content.