The combination of metasurface with optical emitters provides a unique opportunity to control the emission. The metasurface effect strongly depends on the spectral overlap between the internal electronic transitions of the emitter and the optical resonances of the metasurface. Elaborate design of the metasurface could realize the resonances at both absorption and emission wavelengths of the emitter, but it usually leads to complexity in fabrication. In this work, we propose a very simple strategy to obtain the resonances at both wavelengths by sandwiching the emitter layer with a pair of metasurfaces designed for absorption and emission, respectively. For this purpose, we use a sticker of Al metasurface, which is the array of Al nanoparticles embedded in a flexible polymer film that can be stuck on any clean surfaces. The metasurface stack is prepared by simply placing the sticker, resonating at the emission wavelength, on the emitter layer deposited on the TiO2 metasurface resonating at the absorption wavelength. The overall enhancement achieved for the stack of the metasurfaces can be understood roughly as the multiplication of contributions from the respective metasurfaces. Employing a sticker provides an easy-to-make way of constructing a stack of metasurfaces, which increases the degree of freedom in designing the metasurface-coupled emitters.

1.
P.
Anger
,
P.
Bharadwaj
, and
L.
Novotny
, “
Enhancement and quenching of single-molecule fluorescence
,”
Phys. Rev. Lett.
96
,
113002
(
2006
).
2.
V.
Giannini
,
A. I.
Fernández-Domínguez
,
S. C.
Heck
, and
S. A.
Maier
, “
Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters
,”
Chem. Rev.
111
,
3888
3912
(
2011
).
3.
T.
Coenen
,
E. J. R.
Vesseur
,
A.
Polman
, and
A. F.
Koenderink
, “
Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy
,”
Nano Lett.
11
,
3779
3784
(
2011
).
4.
P.
Bharadwaj
,
B.
Deutsch
, and
L.
Novotny
, “
Optical antennas
,”
Adv. Opt. Photonics
1
,
438
(
2009
).
5.
G.
Lozano
,
S. R. K.
Rodriguez
,
M. A.
Verschuuren
, and
J.
Gómez Rivas
, “
Metallic nanostructures for efficient LED lighting
,”
Light Sci. Appl.
5
,
e16080
(
2016
).
6.
T.
Kosako
,
Y.
Kadoya
, and
H. F.
Hofmann
, “
Directional control of light by a nano-optical Yagi-Uda antenna
,”
Nat. Photonics
4
,
312
315
(
2010
).
7.
A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
,
Y.
Avlasevich
,
K.
Müllen
, and
W. E.
Moerner
, “
Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
,”
Nat. Photonics
3
,
654
(
2009
).
8.
W. L.
Barnes
, “
Fluorescence near interfaces: The role of photonic mode density
,”
J. Mod. Opt.
45
,
661
699
(
1998
).
9.
K.
Okamoto
,
I.
Niki
,
A.
Shvartser
,
Y.
Narukawa
,
T.
Mukai
, and
A.
Scherer
, “
Surface-plasmon-enhanced light emitters based on InGaN quantum wells
,”
Nat. Mater.
3
,
601
(
2004
).
10.
K.
Tawa
,
M.
Umetsu
,
H.
Nakazawa
,
T.
Hattori
, and
I.
Kumagai
, “
Application of 300 enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor
,”
ACS Appl. Mater. Interfaces
5
,
8628
8632
(
2013
).
11.
S.-Y.
Liu
,
L.
Huang
,
J.-F.
Li
,
C.
Wang
,
Q.
Li
,
H.-X.
Xu
,
H.-L.
Guo
,
Z.-M.
Meng
,
Z.
Shi
, and
Z.-Y.
Li
, “
Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods
,”
J. Phys. Chem. C
117
,
10636
10642
(
2013
).
12.
H.
Wang
,
B.
Zhang
,
Y.
Zhao
,
X.
Chen
,
Z.
Zhang
, and
H.
Song
, “
Integrated effects of near-field enhancement-induced excitation and surface plasmon-coupled emission of elongated gold nanocrystals on fluorescence enhancement and the applications in pleds
,”
ACS Appl. Electron. Mater.
1
,
2116
2123
(
2019
).
13.
S.
Zou
,
N.
Janel
, and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
,”
J. Chem. Phys.
120
,
10871
(
2004
).
14.
B.
Auguie
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
,
143902
(
2008
).
15.
Y. Z.
Chu
,
E.
Schonbrun
,
T.
Yang
, and
K. B.
Crozier
, “
Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays
,”
Appl. Phys. Lett.
93
,
181108
(
2008
).
16.
S.
Murai
,
M. A.
Verschuuren
,
G.
Lozano
,
G.
Pirruccio
,
S. R. K.
Rodriguez
, and
J. G.
Rivas
, “
Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides
,”
Opt. Express
21
,
4250
4262
(
2013
).
17.
W.
Wang
,
M.
Ramezani
,
A. I.
Väkeväinen
,
P.
Törmä
,
J. G.
Rivas
, and
T. W.
Odom
, “
The rich photonic world of plasmonic nanoparticle arrays
,”
Mater. Today
21
,
303
314
(
2018
).
18.
V. G.
Kravets
,
A. V.
Kabashin
,
W. L.
Barnes
, and
A. N.
Grigorenko
, “
Plasmonic surface lattice resonances: A review of properties and applications
,”
Chem. Rev.
118
,
5912
5951
(
2018
).
19.
I. M.
Hancu
,
A. G.
Curto
,
M.
Castro-López
,
M.
Kuttge
, and
N. F.
van Hulst
, “
Multipolar interference for directed light emission
,”
Nano Lett.
14
,
166
171
(
2014
).
20.
D.
Khlopin
,
F.
Laux
,
W. P.
Wardley
,
J.
Martin
,
G. A.
Wurtz
,
J.
Plain
,
A. V.
Zayats
,
W.
Dickson
, and
D.
Gerard
, “
Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays
,”
J. Opt. Soc. Am. B
34
,
691
(
2017
).
21.
G.
Lozano
,
D. J.
Louwers
,
S. R. K.
Rodriguez
,
S.
Murai
,
O. T. A.
Jansen
,
M. A.
Verschuuren
, and
J. G.
Rivas
, “
Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources
,”
Light Sci. Appl.
2
,
e66
(
2013
).
22.
I. M.
Fradkin
,
S. A.
Dyakov
, and
N. A.
Gippius
, “
Thickness-independent narrow resonance in a stack of plasmonic lattices
,”
Phys. Rev. Appl.
14
,
054030
(
2020
).
23.
D.
Dregely
,
R.
Taubert
,
J.
Dorfmüller
,
R.
Vogelgesang
,
K.
Kern
, and
H.
Giessen
, “
3D optical Yagi–Uda nanoantenna array
,”
Nat. Commun.
2
,
267
(
2011
).
24.
K.
Tanaka
,
D.
Arslan
,
S.
Fasold
,
M.
Steinert
,
J.
Sautter
,
M.
Falkner
,
T.
Pertsch
,
M.
Decker
, and
I.
Staude
, “
Chiral bilayer all-dielectric metasurfaces
,”
ACS Nano
14
,
15926
15935
(
2020
).
25.
Z.
Wu
,
X.
Chen
,
M.
Wang
,
J.
Dong
, and
Y.
Zheng
, “
High-performance ultrathin active chiral metamaterials
,”
ACS Nano
12
,
5030
5041
(
2018
).
26.
N.
Liu
,
H.
Guo
,
L.
Fu
,
S.
Kaiser
,
H.
Schweizer
, and
H.
Giessen
, “
Three-dimensional photonic metamaterials at optical frequencies
,”
Nat. Mater.
7
,
31
37
(
2008
).
27.
G.
Subramania
and
S. Y.
Lin
, “
Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography
,”
Appl. Phys. Lett.
85
,
5037
5039
(
2004
).
28.
A. S. P.
Chang
,
Y. S.
Kim
,
M.
Chen
,
Z.-P.
Yang
,
J. A.
Bur
,
S.-Y.
Lin
, and
K.-M.
Ho
, “
Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff
,”
Opt. Express
15
,
8428
8437
(
2007
).
29.
K.
Agata
,
S.
Murai
, and
K.
Tanaka
, “
Stick-and-play metasurfaces for directional light outcoupling
,”
Appl. Phys. Lett.
118
,
021110
(
2021
).
30.
S.
Murai
,
F.
Zhang
,
K.
Aichi
, and
K.
Tanaka
, “
Oxidation pathway to the TiO2 metasurface for harnessing photolimunescence
,”
J. Appl. Phys.
129
,
163101
(
2021
).
31.
S.
Murai
,
M.
Saito
,
H.
Sakamoto
,
M.
Yamamoto
,
R.
Kamakura
,
T.
Nakanishi
,
K.
Fujita
,
M.
Verschuuren
,
Y.
Hasegawa
, and
K.
Tanaka
, “
Directional outcoupling of photoluminescence from Eu (III)-complex thin films by plasmonic array
,”
APL Photonics
2
,
026104
(
2017
).
32.
G.
Vecchi
,
V.
Giannini
, and
J.
Gómez Rivas
, “
Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
80
,
201401
(
2009
).
33.
Y.
Kawachiya
,
S.
Murai
,
M.
Saito
,
K.
Fujita
, and
K.
Tanaka
, “
Photoluminescence decay rate of an emitter layer on an al nanocylinder array: Effect of layer thickness
,”
J. Opt. Soc. Am. B
36
,
E1
E8
(
2019
).
34.
R.
Kamakura
,
S.
Murai
,
Y.
Yokobayashi
,
K.
Takashima
,
M.
Kuramoto
,
K.
Fujita
, and
K.
Tanaka
, “
Enhanced photoluminescence and directional white-light generation by plasmonic array
,”
J. Appl. Phys.
124
,
213105
(
2018
).
35.
Y.
Gao
,
S.
Murai
,
K.
Shinozaki
,
S.
Ishii
, and
K.
Tanaka
, “
Aluminum for near infrared plasmonics: Amplified up-conversion photoluminescence from core–shell nanoparticles on periodic lattices
,”
Adv. Opt. Mater.
9
,
2001040
(
2021
).
You do not currently have access to this content.