A theoretical approach combining Monte-Carlo and molecular-dynamics techniques is developed to deal with the structural anisotropy upon the spin transition in molecular materials. The simulations were done on a 2D lattice, where the cells have two structural symmetries: square-shaped (non-degenerated) at a low spin (LS) state and a diamond-shaped (degenerated) at a high spin (HS) state. We investigated the thermally induced spin transition and the relaxation of a metastable HS state trapped at low temperatures. We demonstrated that the structural parameters have a crucial impact on the spin transition, and by adjusting the lattice and the elastic parameters, we were able to generate a two-step thermally induced spin transition. The analysis of magnetic and structural properties pointed out that the symmetry breaking reduces significantly the cooperativity between the lattice’s cells. The maps of the difference between cell diagonals reveal an auto-organized HS lattice with an alternation of different symmetries over the state, confirming the symmetry breaking when switching from an LS to HS state. The mechanical relaxation of an LS lattice containing HS defects shows an anisotropic distribution of the elastic energy, channelized over the shortest paths toward the borders of the lattice. The interaction between two HS defects placed in a LS lattice is as well investigated as a function of their separating distance for different symmetries of the HS state. We demonstrated that the HS symmetry impacts the HS/LS elastic barrier as well as the dependence of the relaxed elastic energy on the distance separating two HS defects introduced in an LS lattice.

1.
P.
Gütlich
and
H.
Goodwin
, in Spin Crossover in Transition Metal Compounds I (Springer-Verlag, Berlin, Heidelberg, 2004), Vol. 233, pp. 1–47.
2.
P.
Gütlich
,
Struct. Bond.
44
,
83
195
(
1981
).
3.
P.
Gütlich
,
A.
Hauser
, and
H.
Spiering
,
Angew. Chem. Int. Ed. Engl.
33
,
2024
2054
(
1994
).
4.
E.
König
,
Struct. Bond.
76
,
51
152
(
1991
).
5.
O.
Kahn
and
C.
Martinez
,
Science
279
,
44
48
(
1998
).
6.
A.
Bousseksou
,
K.
Boukheddaden
,
M.
Goiran
,
C.
Consejo
,
M.
Boillot
, and
J.
Tuchagues
,
Phys. Rev. B
65
,
172412
(
2002
).
7.
W.
Kosaka
,
K.
Nomura
,
K.
Hashimoto
, and
S.
Ohkoshi
,
J. Am. Chem. Soc.
127
,
8590
8591
(
2005
).
8.
D.
Papanikolaou
,
W.
Kosaka
,
S.
Margadonna
,
H.
Kagi
,
S.-I.
Ohkoshi
, and
K.
Prassides
,
J. Phys. Chem. C
111
,
8086
8091
(
2007
).
9.
F.
Prins
,
M.
Monrabal-Capilla
,
E. A.
Osorio
,
E.
Coronado
, and
H. S. J.
van der Zant
,
Adv. Mater.
23
,
1545
1549
(
2011
).
10.
A.
Bousseksou
,
F.
Varret
,
M.
Goiran
,
K.
Boukheddaden
, and
J.
Tuchagues
, in Spin Crossover in Transition Metal Compounds III (Springer, Berlin, 2004), Vol. 235, pp. 65–84.
11.
P.
Guionneau
,
M.
Marchivie
,
G.
Bravic
,
J.-F.
Létard
, and
D.
Chasseau
, in Structural Aspects of Spin Crossover. Example of the [FeIILn(NCS)2] Complexes (Springer, Berlin, 2004), pp. 97–128.
12.
I.
Boldog
,
A. B.
Gaspar
,
V.
Martínez
,
P.
Pardo-Ibañez
,
V.
Ksenofontov
,
A.
Bhattacharjee
,
P.
Gütlich
, and
J. A.
Real
,
Angew. Chem. Int. Ed.
47
,
6433
6437
(
2008
).
13.
M.
Cammarata
,
R.
Bertoni
,
M.
Lorenc
,
H.
Cailleau
,
S.
Di Matteo
,
C.
Mauriac
,
S. F.
Matar
,
H.
Lemke
,
M.
Chollet
,
S.
Ravy
,
C.
Laulhé
,
J.-F.
Létard
, and
E.
Collet
,
Phys. Rev. Lett.
113
,
227402
(
2014
).
14.
M. A.
Halcrow
,
Chem. Soc. Rev.
40
,
4119
4142
(
2011
).
15.
M.
Lorenc
,
J.
Hébert
,
N.
Moisan
,
E.
Trzop
,
M.
Servol
,
M.
Buron-Le Cointe
,
H.
Cailleau
,
M. L.
Boillot
,
E.
Pontecorvo
,
M.
Wulff
,
S.
Koshihara
, and
E.
Collet
,
Phys. Rev. Lett.
103
,
028301
(
2009
).
16.
M.
Buron-Le Cointe
,
J.
Hébert
,
C.
Baldé
,
N.
Moisan
,
L.
Toupet
,
P.
Guionneau
,
J. F.
Létard
,
E.
Freysz
,
H.
Cailleau
, and
E.
Collet
,
Phys. Rev. B
85
,
064114
(
2012
).
17.
N.
Bréfuel
,
E.
Collet
,
H.
Watanabe
,
M.
Kojima
,
N.
Matsumoto
,
L.
Toupet
,
K.
Tanaka
, and
J.-P.
Tuchagues
,
Chem. Eur. J.
16
,
14060
14068
(
2010
).
18.
N.
Bréfuel
,
H.
Watanabe
,
L.
Toupet
,
J.
Come
,
N.
Matsumoto
,
E.
Collet
,
K.
Tanaka
, and
J.-P.
Tuchagues
,
Angew. Chem. Int. Ed.
48
,
9304
9307
(
2009
).
19.
M.
Nishino
,
P. A.
Rikvold
,
C.
Omand
, and
S.
Miyashita
,
Phys. Rev. B
98
,
144402
(
2018
).
20.
S.
Zerdane
,
M.
Cammarata
,
L.
Balducci
,
R.
Bertoni
,
L.
Catala
,
S.
Mazerat
,
T.
Mallah
,
M. N.
Pedersen
,
M.
Wulff
,
K.
Nakagawa
,
H.
Tokoro
,
S.-I.
Ohkoshi
, and
E.
Collet
,
Eur. J. Inorg. Chem.
2018
,
272
277
.
21.
B.
Weber
,
C.
Carbonera
,
C.
Desplances
, and
J.-F.
Létard
,
Eur. J. Inorg. Chem.
2008
,
1589
1598
.
22.
Y.
Garcia
,
O.
Kahn
,
L.
Rabardel
,
B.
Chansou
,
L.
Salmon
, and
J. P.
Tuchagues
,
Inorg. Chem.
38
,
4663
4670
(
1999
).
23.
H.
Watanabe
,
K.
Tanaka
,
N.
Bréfuel
,
H.
Cailleau
,
J.-F.
Létard
,
S.
Ravy
,
P.
Fertey
,
M.
Nishino
,
S.
Miyashita
, and
E.
Collet
,
Phys. Rev. B
93
,
014419
(
2016
).
24.
M.
Paez-Espejo
,
M.
Sy
, and
K.
Boukheddaden
,
J. Am. Chem. Soc.
140
,
11954
11964
(
2018
).
25.
Z.-Y.
Li
,
J.-W.
Dai
,
Y.
Shiota
,
K.
Yoshizawa
,
S.
Kanegawa
, and
O.
Sato
,
Chem. Eur. J.
19
,
12948
12952
(
2013
).
26.
C.-J.
Zhang
,
K.-T.
Lian
,
S.-G.
Wu
,
Y.
Liu
,
G.-Z.
Huang
,
Z.-P.
Ni
, and
M.-L.
Tong
,
Inorg. Chem. Front.
7
,
911
917
(
2020
).
27.
C.-J.
Zhang
,
K.-T.
Lian
,
G.-Z.
Huang
,
S.
Bala
,
Z.-P.
Ni
, and
M.-L.
Tong
,
Chem. Commun.
55
,
11033
11036
(
2019
).
28.
J.
Zhang
,
W.-W.
Yao
,
L.
Sang
,
X.-W.
Pan
,
X.-Z.
Wang
,
W.-L.
Liu
,
L.
Wang
, and
X.-M.
Ren
,
Chem. Commun.
56
,
462
465
(
2020
).
29.
M.
Nishino
,
C.
Enachescu
, and
S.
Miyashita
,
Phys. Rev. B
100
,
134414
(
2019
).
30.
R.
Traiche
,
M.
Sy
, and
K.
Boukheddaden
,
J. Phys. Chem. C
122
,
4083
4096
(
2018
).
31.
N.
Sasaki
and
T.
Kambara
,
Phys. Rev. B
40
,
2442
2449
(
1989
).
32.
A.
Bousseksou
,
J.
Nasser
,
J.
Linares
,
K.
Boukheddaden
, and
F.
Varret
,
J. Phys. I
2
,
1381
1403
(
1992
).
33.
H.
Romstedt
,
H.
Spiering
, and
P.
Gütlich
,
J. Phys. Chem. Solids
59
,
1353
1362
(
1998
).
34.
J. A.
Real
,
H.
Bolvin
,
A.
Bousseksou
,
A.
Dworkin
,
O.
Kahn
,
F.
Varret
, and
J.
Zarembowitch
,
J. Am. Chem. Soc.
114
,
4650
4658
(
1992
).
35.
J.
Cirera
and
E.
Ruiz
,
J. Mater. Chem. C
3
,
7954
7961
(
2015
).
36.
M.
Paez-Espejo
,
M.
Sy
, and
K.
Boukheddaden
,
J. Am. Chem. Soc.
138
,
3202
3210
(
2016
).
37.
Y.
Singh
,
H.
Oubouchou
,
M.
Nishino
,
S.
Miyashita
, and
K.
Boukheddaden
,
Phys. Rev. B
101
,
054105
(
2020
).
38.
A.
Slimani
,
K.
Boukheddaden
,
F.
Varret
,
H.
Oubouchou
,
M.
Nishino
, and
S.
Miyashita
,
Phys. Rev. B
87
,
014111
(
2013
).
39.
A.
Slimani
,
K.
Boukheddaden
, and
K.
Yamashita
,
Phys. Rev. B
92
,
014111
(
2015
).
40.
J. A. K.
Howard
and
M. R.
Probert
,
Science
343
,
1098
1102
(
2014
).
41.
K.
Ridier
,
G. A.
Craig
,
F.
Damay
,
T.
Fennell
,
M.
Murrie
, and
G.
Chaboussant
,
Phys. Rev. B
95
,
094403
(
2017
).
42.
Y.
Jiang
,
L. C.
Liu
,
H. M.
Müller-Werkmeister
,
C.
Lu
,
D.
Zhang
,
R. L.
Field
,
A.
Sarracini
,
G.
Moriena
,
E.
Collet
, and
R. J. D.
Miller
,
Angew. Chem. Int. Ed.
56
,
7130
7134
(
2017
).
43.
S.
Pillet
,
E.-E.
Bendeif
,
S.
Bonnet
,
H. J.
Shepherd
, and
P.
Guionneau
,
Phys. Rev. B
86
,
064106
(
2012
).
44.
D.
Chernyshov
,
M.
Hostettler
,
K. W.
Törnroos
, and
H.-B.
Bürgi
,
Angew. Chem. Int. Ed.
42
,
3825
3830
(
2003
).
45.
M.
Hostettler
,
K. W.
Törnroos
,
D.
Chernyshov
,
B.
Vangdal
, and
H.-B.
Bürgi
,
Angew. Chem. Int. Ed.
43
,
4589
4594
(
2004
).
46.
D. L.
Reger
,
C. A.
Little
,
V. G.
Young
, and
M.
Pink
,
Inorg. Chem.
40
,
2870
2874
(
2001
).
47.
S.
Bonnet
,
M. A.
Siegler
,
J. S.
Costa
,
G.
Molnár
,
A.
Bousseksou
,
A. L.
Spek
,
P.
Gamez
, and
J.
Reedijk
,
Chem. Commun.
2008
,
5619
5621
.
48.
M.
Shatruk
,
H.
Phan
,
B. A.
Chrisostomo
, and
A.
Suleimenova
,
Coord. Chem. Rev.
289–290
,
62
73
(
2015
).
49.
N.
Ortega-Villar
,
M. C.
Muñoz
, and
J. A.
Real
,
Magnetochemistry
2
,
16
(
2016
).
50.
A. L.
Thompson
,
A. E.
Goeta
,
J. A.
Real
,
A.
Galet
, and
M.
Carmen Muñoz
,
Chem. Commun.
2004
,
1390
1391
.
51.
N.
Willenbacher
and
H.
Spiering
,
J. Phys. C: Solid State Phys.
21
,
1423
1439
(
1988
).
52.
H.
Spiering
and
N.
Willenbacher
,
J. Phys. Condens. Matter
1
,
10089
10105
(
1989
).
53.
T.
Nakada
,
P. A.
Rikvold
,
T.
Mori
,
M.
Nishino
, and
S.
Miyashita
,
Phys. Rev. B
84
,
054433
(
2011
).
54.
M.
Nishino
,
K.
Boukheddaden
,
Y.
Konishi
, and
S.
Miyashita
,
Phys. Rev. Lett.
98
,
247203
(
2007
).
55.
M.
Nishino
,
C.
Enachescu
,
S.
Miyashita
,
K.
Boukheddaden
, and
F.
Varret
,
Phys. Rev. B
82
,
020409
(
2010
).
56.
C.
Enachescu
,
L.
Stoleriu
,
A.
Stancu
, and
A.
Hauser
,
Phys. Rev. Lett.
102
,
257204
(
2009
).
57.
C.
Enachescu
,
M.
Nishino
,
S.
Miyashita
,
A.
Hauser
,
A.
Stancu
, and
L.
Stoleriu
,
Europhys. Lett.
91
,
27003
(
2010
).
58.
M.
Nishino
,
C.
Enachescu
,
S.
Miyashita
,
P. A.
Rikvold
,
K.
Boukheddaden
, and
F.
Varret
,
Sci. Rep.
1
,
162
(
2011
).
59.
C.
Enachescu
,
M.
Nishino
,
S.
Miyashita
,
L.
Stoleriu
, and
A.
Stancu
,
Phys. Rev. B
86
,
054114
(
2012
).
60.
W.
Nicolazzi
,
S.
Pillet
, and
C.
Lecomte
,
Phys. Rev. B
78
,
174401
(
2008
).
61.
Z.
Wu
,
J. F.
Justo
,
C. R. S.
da Silva
,
S.
de Gironcoli
, and
R. M.
Wentzcovitch
,
Phys. Rev. B
80
,
014409
(
2009
).
62.
I.
Shteto
,
K.
Boukheddaden
, and
F.
Varret
,
Phys. Rev. E
60
,
5139
5150
(
1999
).
63.
J.
Wajnflasz
,
Phys. Status Solidi B
40
,
537
545
(
1970
).
64.
R. A.
Bari
and
J.
Sivardière
,
Phys. Rev. B
5
,
4466
4471
(
1972
).
65.
C.
Kohler
,
R.
Jakobi
,
E.
Meissner
,
L.
Wiehl
,
H.
Spiering
, and
P.
Gütlich
,
J. Phys. Chem. Solids
51
,
239
247
(
1990
).
66.
R.
Jakobi
,
H.
Spiering
, and
P.
Gütlich
,
J. Phys. Chem. Solids
53
,
267
275
(
1992
).
67.
K.
Boukheddaden
,
J.
Linares
,
E.
Codjovi
,
F.
Varret
,
V.
Niel
, and
J. A.
Real
,
J. Appl. Phys.
93
,
7103
7105
(
2003
).
68.
J.
Andreas Hauser
,
Chem. Phys. Lett.
152
,
468
472
(
1988
).
69.
D.
Chernyshov
,
H.-B.
Bürgi
,
M.
Hostettler
, and
K. W.
Törnroos
,
Phys. Rev. B
70
,
094116
(
2004
).
70.
A.
Bousseksou
,
F.
Varret
, and
J.
Nasser
,
J. Phys. I
3
,
1463
1473
(
1993
).
71.
K.
Boukheddaden
,
I.
Shteto
,
B.
Hôo
, and
F.
Varret
,
Phys. Rev. B
62
,
14796
14805
(
2000
).
72.
W.
Yu
and
P.
Gielisse
,
Mater. Res. Bull.
6
,
621
638
(
1971
).
73.
A.
Slimani
,
K.
Boukheddaden
,
F.
Varret
,
M.
Nishino
, and
S.
Miyashita
,
J. Chem. Phys.
139
,
194706
(
2013
).
74.
L.
Piñeiro López
,
F.-J.
Valverde-Muñoz
,
E.
Trzop
,
M. C.
Muñoz
,
M.
Seredyuk
,
J.
Castells-Gil
,
I.
da Silva
,
C.
Martí-Gastaldo
,
E.
Collet
, and
J. A.
Real
,
Chem. Sci.
12
,
1317
1326
(
2021
).
75.
M.
Ndiaye
and
K.
Boukheddaden
,
J. Phys. Soc. Jpn.
89
,
014004
(
2020
).
76.
P.
Gütlich
,
V.
Ksenofontov
, and
A. B.
Gaspar
,
Coord. Chem. Rev.
249
,
1811
1829
(
2005
).
77.
Z.
Wu
,
J. A. F.
Justo
, and
R. M.
Wentzcovitch
,
Phys. Rev. Lett.
110
,
228501
(
2013
).
78.
W.
Wang
,
I. Y.
Chan
,
S.
Schenker
, and
A.
Hauser
,
J. Chem. Phys.
106
,
3817
3820
(
1997
).
79.
G.
Molnár
,
T.
Kitazawa
,
L.
Dubrovinsky
,
J. J.
McGarvey
, and
A.
Bousseksou
,
J. Phys. Condens. Matter
16
,
S1129
S1136
(
2004
).
80.
H.
Spiering
,
T.
Kohlhaas
,
H.
Romstedt
,
A.
Hauser
,
C.
Bruns-Yilmaz
,
J.
Kusz
, and
P.
Gütlich
,
Coord. Chem. Rev.
190–192
,
629
647
(
1999
).
81.
G.
Molnár
,
V.
Niel
,
J.-A.
Real
,
L.
Dubrovinsky
,
A.
Bousseksou
, and
J. J.
McGarvey
,
J. Phys. Chem. B
107
,
3149
3155
(
2003
).

Supplementary Material

You do not currently have access to this content.