A recently reported procedure [Yoshida et al., J. Appl. Phys. 128, 133303 (2020)] for estimating plasma parameters in atmospheric-pressure (AP) Ar plasma has been extended to be applicable for Ar-N2 AP plasma. Amplitudes of current density and voltage between the electrodes and power absorbed in the plasma have been obtained by three-dimensional computer simulation of the whole system. The only needed input parameters for the simulation are input power and capacitance gaps in the matching unit. Using an inhomogeneous plasma model and a power balance relation, the central electron density (n0) and the collisional energy loss per electron–ion pair created (ɛc) have been estimated. In this study, to estimate the average electron temperature (Te), ɛc as a function of Te has been calculated from the cross-sectional data set on electron impact reactions in the range applicable for the present plasma condition. In the low Te range (<1 eV) where ɛc has not been well reported, we have calculated ɛc(Te) as a function of N2 concentration in Ar taking the vibrational and rotational excitations of N2 molecules into account. From the experiments and analyses of Ar-N2 AP plasma generation, it is found that n0 decreases drastically with increasing N2 concentration while Te increases slightly. Also, it is found that n0 increases with increasing input power (P) such as n0P1.9 while Te increases gradually. Based on the N2 concentration and input power dependences of Te and n0, some guidelines for selecting effective AP plasma nitridation conditions have been discussed.

1.
M.
Kogoma
,
M.
Kusano
, and
Y.
Kusano
,
Generation and Applications of Atmospheric Pressure Plasmas
(
Nova Science
,
New York
,
2011
).
2.
D.
Pappas
,
J. Vac. Sci. Technol., A
29
,
020801
(
2011
).
3.
T.
Belmonte
,
G.
Henrion
, and
T.
Gries
,
J. Therm. Spray Technol.
20
,
744
(
2011
).
4.
D.
Merche
,
N.
Vandencasteele
, and
F.
Reniers
,
Thin Solid Films
520
,
4219
(
2012
).
5.
F.
Massines
,
C. S.
Bournet
,
F.
Fanelli
,
N.
Naudé
, and
N.
Gherardi
,
Plasma Process. Polym.
9
,
1041
(
2012
).
6.
H.
Kakiuchi
,
H.
Ohmi
, and
K.
Yasutake
,
J. Vac. Sci. Technol., A
32
,
030801
(
2014
).
7.
H.
Ohmi
,
T.
Yamada
,
H.
Kakiuchi
, and
K.
Yasutake
,
Jpn. J. Appl. Phys.
50
,
08JD01
(
2011
).
8.
H.
Kakiuchi
,
H.
Ohmi
, and
K.
Yasutake
,
Precis. Eng.
60
,
265
(
2019
).
9.
K.
Yoshida
,
K.
Nitta
,
H.
Ohmi
,
K.
Yasutake
, and
H.
Kakiuchi
,
J. Appl. Phys.
128
,
133303
(
2020
). Note that Eq. (28) in this reference has misprints and should be the same as Eq. (8) in the present report.
10.
M.
Shuto
,
H.
Ohmi
,
H.
Kakiuchi
,
T.
Yamada
, and
K.
Yasutake
,
J. Appl. Phys.
122
,
043303
(
2017
).
11.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
(
Wiley
,
New York
,
2005
).
12.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
18
,
045011
(
2009
).
13.
N.
Kang
,
F.
Gaboriau
,
S.
Oh
, and
A.
Ricard
,
Plasma Sources Sci. Technol.
20
,
045015
(
2011
).
14.
J. T.
Gudmundsson
,
T.
Kimura
, and
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
8
,
22
(
1999
).
15.
C.
Lee
,
D. B.
Graves
,
M. A.
Lieberman
, and
D. W.
Hess
,
J. Electrochem. Soc.
141
,
1546
(
1994
).
16.
M.
Bashir
,
J. M.
Rees
,
S.
Bashir
, and
W. B.
Zimmerman
,
Phys. Lett. A
378
,
2395
(
2014
).
17.
C. O.
Laux
and
C. H.
Kruger
,
J. Quant. Spectrosc. Radiat. Transfer
48
,
9
(
1992
).
18.
S.
Koike
,
T.
Sakamoto
,
H.
Kobori
,
H.
Matsuura
, and
H.
Akatsuka
,
Jpn. J. Appl. Phys.
43
,
5550
(
2004
).
19.
T.
Kimura
and
H.
Kasugai
,
J. Appl. Phys.
108
,
033305
(
2010
).
20.
S.
Nunomura
,
M.
Kondo
, and
H.
Akatsuka
,
Plasma Sources Sci. Technol.
15
,
783
(
2006
).
21.
A.
Sarani
,
A. Y.
Nikiforov
, and
C.
Leys
,
Phys. Plasmas
17
,
063504
(
2010
).
23.
G. A.
Hebner
and
P. A.
Miller
,
J. Appl. Phys.
87
,
8304
(
2000
).
24.
J. T.
Gudmundsson
and
E. G.
Thorsteinsson
,
Plasma Sources Sci. Technol.
16
,
399
(
2007
).
25.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
17
,
338
(
1989
).
26.
J.
Jonkers
,
M.
van de Sande
,
A.
Sola
,
A.
Gamero
, and
J.
Van der Mullen
,
Plasma Sources Sci. Technol.
12
,
30
(
2003
).
27.
G. A.
Bird
,
Molecular gas Dynamics
(
Clarendon
,
Oxford
,
1976
).
28.
D. A.
Benoy
,
J. A. M.
van der Mullen
,
B.
van der Sijde
, and
D. C.
Schram
,
J. Quant. Spectrosc. Radiat. Transfer
46
,
195
(
1991
).
29.
O.
Zatsarinny
and
K.
Bartschat
,
J. Phys. B At. Mol. Opt. Phys.
37
,
4693
(
2004
).
30.
M.
Allan
,
O.
Zatsarinny
, and
K.
Bartschat
,
Phys. Rev. A
74
,
030701(R)
(
2006
).
31.
L. L.
Alves
, “
The IST-Lisbon database on LXCat
,”
J. Phys. Conf. Series
565
,
012007
(
2014
).
32.
J.
Loureiro
and
C. M.
Ferreira
,
J. Phys. D
19
,
17
(
1986
).
33.
A.
Bourdon
and
P.
Vervisch
,
J. Thermophys. Heat Transfer
14
,
489
(
2000
).
34.
G.
Colonna
,
Plasma Sources Sci. Technol.
24
,
035004
(
2015
).
35.
L. C.
Pitchford
and
A. V.
Phelps
,
Bull. Am. Phys. Soc.
27
,
109
(
1982
).
36.
K.
Tachibana
and
A. V.
Phelps
,
J. Chem. Phys.
71
,
3544
(
1979
).
37.
E.
Gerjuoy
and
S.
Stein
,
Phys. Rev.
97
,
1671
(
1955
).
38.
L. S.
Frost
and
A. V.
Phelps
,
Phys. Rev.
127
,
1621
(
1962
).
39.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
35
,
31
(
2006
).
You do not currently have access to this content.