Recent studies have established that the anti-Stokes Raman signal from plasmonic metal nanostructures can be used to determine the two separate temperatures that characterize carriers inside the metal—the temperature of photoexcited “hot carriers” and carriers that are thermalized with the metal lattice. However, the related signal in the Stokes spectral region has historically impeded surface enhanced Raman spectroscopy, as the vibrational peaks of adsorbed molecules are always accompanied by the broad background of the metal substrate. The fundamental source of the metal signal, and hence its contribution to the spectrum, has been unclear. Here, we outline a unified theoretical model that describes both the temperature-dependent behavior and the broad spectral distribution. We suggest that the majority of the Raman signal is from inelastic scattering directly with carriers in a non-thermal energy distribution that have been excited via damping of surface plasmon. In addition, a significant spectral component (∼1%) is due to a sub-population of hot carriers with an energy distribution that is well approximated by an elevated temperature distribution, about 2000 K greater than the lattice temperature of the metal. We have performed temperature- and power-dependent Raman experiments to show how a simple fitting procedure reveals the plasmon dephasing time as well as the temperatures of the hot carriers and the metal lattice, in order to correlate these parameters with the quantitative Raman analysis of chemical species adsorbed on the metal surface.

1.
M. I.
Stockman
, “
Nanoplasmonic sensing and detection
,”
Science
348
(
6232
),
287
(
2015
).
2.
E. M.
Larsson
,
C.
Langhammer
,
I.
Zorić
, and
B.
Kasemo
, “
Nanoplasmonic probes of catalytic reactions
,”
Science
326
(
5956
),
1091
(
2009
).
3.
T.
Vo-Dinh
,
H.-N.
Wang
, and
J.
Scaffidi
, “
Plasmonic nanoprobes for SERS biosensing and bioimaging
,”
J. Biophotonics
3
(
1-2
),
89
102
(
2010
).
4.
A. G.
Brolo
, “
Plasmonics for future biosensors
,”
Nat. Photonics
6
(
11
),
709
713
(
2012
).
5.
M. A.
Green
and
S.
Pillai
, “
Harnessing plasmonics for solar cells
,”
Nat. Photonics
6
(
3
),
130
132
(
2012
).
6.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
, “
Plasmon-induced hot carrier science and technology
,”
Nat. Nanotechnol.
10
(
1
),
25
34
(
2015
).
7.
O. H.-C.
Cheng
,
D. H.
Son
, and
M.
Sheldon
, “
Light-induced magnetism in plasmonic gold nanoparticles
,”
Nat. Photonics
14
(
6
),
365
368
(
2020
).
8.
C.-A.
Wang
,
H.-C.
Ho
, and
C.-H.
Hsueh
, “
Periodic ZnO-elevated gold dimer nanostructures for surface-enhanced Raman scattering applications
,”
J. Phys. Chem. C
122
(
47
),
27016
27023
(
2018
).
9.
M. G.
Blaber
and
G. C.
Schatz
, “
Extending SERS into the infrared with gold nanosphere dimers
,”
Chem. Commun.
47
(
13
),
3769
3771
(
2011
).
10.
M.
Moskovits
, “
Surface-enhanced Raman spectroscopy: A brief retrospective
,”
J. Raman Spectrosc.
36
(
6-7
),
485
496
(
2005
).
11.
G. B.
Fisher
and
B. A.
Sexton
, “
Identification of an adsorbed hydroxyl species on the Pt(111) surface
,”
Phys. Rev. Lett.
44
(
10
),
683
686
(
1980
).
12.
E.
Burstein
,
Y. J.
Chen
,
C. Y.
Chen
,
S.
Lundquist
, and
E.
Tosatti
, “‘
Giant’ Raman scattering by adsorbed molecules on metal surfaces
,”
Solid State Commun.
29
(
8
),
567
570
(
1979
).
13.
K.-Q.
Lin
,
J.
Yi
,
J.-H.
Zhong
,
S.
Hu
,
B.-J.
Liu
,
J.-Y.
Liu
,
C.
Zong
,
Z.-C.
Lei
,
X.
Wang
,
J.
Aizpurua
,
R.
Esteban
, and
B.
Ren
, “
Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering
,”
Nat. Commun.
8
(
1
),
14891
(
2017
).
14.
Y.-Y.
Cai
,
J. G.
Liu
,
L. J.
Tauzin
,
D.
Huang
,
E.
Sung
,
H.
Zhang
,
A.
Joplin
,
W.-S.
Chang
,
P.
Nordlander
, and
S.
Link
, “
Photoluminescence of gold nanorods: Purcell effect enhanced emission from Hot carriers
,”
ACS Nano
12
(
2
),
976
985
(
2018
).
15.
Y.-Y.
Cai
,
E.
Sung
,
R.
Zhang
,
L. J.
Tauzin
,
J. G.
Liu
,
B.
Ostovar
,
Y.
Zhang
,
W.-S.
Chang
,
P.
Nordlander
, and
S.
Link
, “
Anti-Stokes emission from hot carriers in gold nanorods
,”
Nano Lett.
19
(
2
),
1067
1073
(
2019
).
16.
S. M.
Barnett
,
N.
Harris
, and
J. J.
Baumberg
, “
Molecules in the mirror: How SERS backgrounds arise from the quantum method of images
,”
Phys. Chem. Chem. Phys.
16
(
14
),
6544
6549
(
2014
).
17.
J. T.
Hugall
and
J. J.
Baumberg
, “
Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: The origin of SERS backgrounds
,”
Nano Lett.
15
(
4
),
2600
2604
(
2015
).
18.
S.
Mahajan
,
R. M.
Cole
,
J. D.
Speed
,
S. H.
Pelfrey
,
A. E.
Russell
,
P. N.
Bartlett
,
S. M.
Barnett
, and
J. J.
Baumberg
, “
Understanding the surface-enhanced Raman spectroscopy ‘background’
,”
J. Phys. Chem. C
114
(
16
),
7242
7250
(
2010
).
19.
J.
Mertens
,
M.-E.
Kleemann
,
R.
Chikkaraddy
,
P.
Narang
, and
J. J.
Baumberg
, “
How light is emitted by plasmonic metals
,”
Nano Lett.
17
(
4
),
2568
2574
(
2017
).
20.
J.
Huang
,
W.
Wang
,
C. J.
Murphy
, and
D. G.
Cahill
, “
Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation
,”
Proc. Natl. Acad. Sci. U.S.A.
111
(
3
),
906
(
2014
).
21.
X.
Xie
and
D. G.
Cahill
, “
Thermometry of plasmonic nanostructures by anti-stokes electronic Raman scattering
,”
Appl. Phys. Lett.
109
(
18
),
183104
(
2016
).
22.
N.
Hogan
and
M.
Sheldon
, “
Comparing steady state photothermalization dynamics in copper and gold nanostructures
,”
J. Chem. Phys.
152
(
6
),
061101
(
2020
).
23.
N.
Hogan
,
S.
Wu
, and
M.
Sheldon
, “
Photothermalization and hot electron dynamics in the steady state
,”
J. Phys. Chem. C
124
(
9
),
4931
4945
(
2020
).
24.
S.
Wu
,
N.
Hogan
, and
M.
Sheldon
, “
Hot electron emission in plasmonic thermionic converters
,”
ACS Energy Lett.
4
(
10
),
2508
2513
(
2019
).
25.
J.
Szczerbiński
,
L.
Gyr
,
J.
Kaeslin
, and
R.
Zenobi
, “
Plasmon-driven photocatalysis leads to products known from e-beam and x-ray-induced surface chemistry
,”
Nano Lett.
18
(
11
),
6740
6749
(
2018
).
26.
L.
Li
,
L.
Shao
,
X.
Liu
,
A.
Gao
,
H.
Wang
,
B.
Zheng
,
G.
Hou
,
K.
Shehzad
,
L.
Yu
,
F.
Miao
,
Y.
Shi
,
Y.
Xu
, and
X.
Wang
, “
Room-temperature valleytronic transistor
,”
Nat. Nanotechnol.
15
(
9
),
743
749
(
2020
).
27.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
, “
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
,”
Nat. Mater.
10
(
12
),
911
921
(
2011
).
28.
H.-S.
Feng
,
F.
Dong
,
H.-S.
Su
,
M. M.
Sartin
, and
B.
Ren
, “
In situ investigation of hot-electron-induced Suzuki−Miyaura reaction by surface-enhanced Raman spectroscopy
,”
J. Appl. Phys.
128
(
17
),
173105
(
2020
).
29.
M.
Inagaki
,
K.
Motobayashi
, and
K.
Ikeda
, “
In situ surface-enhanced electronic and vibrational Raman scattering spectroscopy at metal/molecule interfaces
,”
Nanoscale
12
(
45
),
22988
22994
(
2020
).
30.
J. I.
Gersten
,
R. L.
Birke
, and
J. R.
Lombardi
, “
Theory of enhance I light scattering from molecules adsorbed at the metal-solution interface
,”
Phys. Rev. Lett.
43
(
2
),
147
150
(
1979
).
31.
M. R.
Beversluis
,
A.
Bouhelier
, and
L.
Novotny
, “
Continuum generation from single gold nanostructures through near-field mediated intraband transitions
,”
Phys. Rev. B
68
(
11
),
115433
(
2003
).
32.
A.
Otto
,
W.
Akemann
, and
A.
Pucci
, “
Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS
,”
Isr. J. Chem.
46
(
3
),
307
315
(
2006
).
33.
S.
Mukherjee
,
F.
Libisch
,
N.
Large
,
O.
Neumann
,
L. V.
Brown
,
J.
Cheng
,
J. B.
Lassiter
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au
,”
Nano Lett.
13
(
1
),
240
247
(
2013
).
34.
L.
Zhou
,
D. F.
Swearer
,
C.
Zhang
,
H.
Robatjazi
,
H.
Zhao
,
L.
Henderson
,
L.
Dong
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Quantifying hot carrier and thermal contributions in plasmonic photocatalysis
,”
Science
362
(
6410
),
69
(
2018
).
35.
G. V.
Hartland
,
L. V.
Besteiro
,
P.
Johns
, and
A. O.
Govorov
, “
What’s so hot about electrons in metal nanoparticles?
,”
ACS Energy Lett.
2
(
7
),
1641
1653
(
2017
).
36.
G. V.
Hartland
, “
Optical studies of dynamics in noble metal nanostructures
,”
Chem. Rev.
111
(
6
),
3858
3887
(
2011
).
37.
S.
Link
and
M. A.
El-Sayed
, “
Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods
,”
J. Phys. Chem. B
103
(
40
),
8410
8426
(
1999
).
38.
S.
Link
and
M. A.
El-Sayed
, “
Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals
,”
Int. Rev. Phys. Chem.
19
(
3
),
409
453
(
2000
).
39.
B.
Seemala
,
A. J.
Therrien
,
M.
Lou
,
K.
Li
,
J. P.
Finzel
,
J.
Qi
,
P.
Nordlander
, and
P.
Christopher
, “
Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields?
,”
ACS Energy Lett.
4
(
8
),
1803
1809
(
2019
).
40.
A. J.
Therrien
,
M. J.
Kale
,
L.
Yuan
,
C.
Zhang
,
N. J.
Halas
, and
P.
Christopher
, “
Impact of chemical interface damping on surface plasmon dephasing
,”
Faraday Discuss.
214
(
0
),
59
72
(
2019
).
41.
B.
Foerster
,
V. A.
Spata
,
E. A.
Carter
,
C.
Sönnichsen
, and
S.
Link
, “
Plasmon damping depends on the chemical nature of the nanoparticle interface
,”
Sci. Adv.
5
(
3
),
eaav0704
(
2019
).
42.
C.
Voisin
,
N.
Del Fatti
,
D.
Christofilos
, and
F.
Vallée
, “
Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles
,”
J. Phys. Chem. B
105
(
12
),
2264
2280
(
2001
).
43.
A. O.
Govorov
,
H.
Zhang
, and
Y. K.
Gun’ko
, “
Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules
,”
J. Phys. Chem. C
117
(
32
),
16616
16631
(
2013
).
44.
A. O.
Govorov
and
H.
Zhang
, “
Kinetic density functional theory for plasmonic nanostructures: Breaking of the plasmon peak in the quantum regime and generation of hot electrons
,”
J. Phys. Chem. C
119
(
11
),
6181
6194
(
2015
).
45.
X.-T.
Kong
,
Z.
Wang
, and
A. O.
Govorov
, “
Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination
,”
Adv. Opt. Mater.
5
(
15
) (
2017
).
46.
L. V.
Besteiro
,
X.-T.
Kong
,
Z.
Wang
,
G.
Hartland
, and
A. O.
Govorov
, “
Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: Quantum and classical mechanisms
,”
ACS Photonics
4
(
11
),
2759
2781
(
2017
).
47.
P.
Narang
,
R.
Sundararaman
, and
H. A.
Atwater
, “
Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
,”
Nanophotonics
5
(
1
),
96
111
(
2016
).
48.
Y.
Dubi
and
Y.
Sivan
, “‘
Hot’ electrons in metallic nanostructures-non-thermal carriers or heating?
,”
Light Sci. Appl.
8
,
89
(
2019
).
49.
J. R. M.
Saavedra
,
A.
Asenjo-Garcia
, and
F. J.
García de Abajo
, “
Hot-electron dynamics and thermalization in small metallic nanoparticles
,”
ACS Photonics
3
(
9
),
1637
1646
(
2016
).
50.
R.
Sundararaman
,
P.
Narang
,
A. S.
Jermyn
,
W. A.
Goddard
 III
, and
H. A.
Atwater
, “
Theoretical predictions for hot-carrier generation from surface plasmon decay
,”
Nat. Commun.
5
(
1
),
5788
(
2014
).
51.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
, and
W. A.
Goddard
, “
Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry
,”
ACS Nano
10
(
1
),
957
966
(
2016
).
52.
A.
Manjavacas
,
J. G.
Liu
,
V.
Kulkarni
, and
P.
Nordlander
, “
Plasmon-induced hot carriers in metallic nanoparticles
,”
ACS Nano
8
(
8
),
7630
7638
(
2014
).
53.
J. G.
Liu
,
H.
Zhang
,
S.
Link
, and
P.
Nordlander
, “
Relaxation of plasmon-induced hot carriers
,”
ACS Photonics
5
(
7
),
2584
2595
(
2018
).
54.
S.
Dal Forno
,
L.
Ranno
, and
J.
Lischner
, “
Material, size, and environment dependence of plasmon-induced hot carriers in metallic nanoparticles
,”
J. Phys. Chem. C
122
(
15
),
8517
8527
(
2018
).
55.
Y.-H.
Liau
,
A. N.
Unterreiner
,
Q.
Chang
, and
N. F.
Scherer
, “
Ultrafast dephasing of single nanoparticles studied by two-pulse second-order interferometry
,”
J. Phys. Chem. B
105
(
11
),
2135
2142
(
2001
).
56.
M.
Pelton
,
M.
Liu
,
S.
Park
,
N. F.
Scherer
, and
P.
Guyot-Sionnest
, “
Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation
,”
Phys. Rev. B
73
(
15
),
155419
(
2006
).
57.
N.
Singh
, “
Two-temperature model of nonequilibrium electron relaxation: A review
,”
Int. J. Mod. Phys. B
24
(
09
),
1141
1158
(
2010
).
58.
A.
Kudelski
, “
Local monitoring of surface chemistry with Raman spectroscopy
,”
J. Solid State Electrochem.
13
(
2
),
225
230
(
2009
).
59.
K. F.
Domke
,
D.
Zhang
, and
B.
Pettinger
, “
Enhanced Raman spectroscopy: Single molecules or carbon?
,”
J. Phys. Chem. C
111
(
24
),
8611
8616
(
2007
).
60.
M.
Veres
,
M.
Füle
,
S.
Tóth
,
M.
Koós
, and
I.
Pócsik
, “
Surface enhanced Raman scattering (SERS) investigation of amorphous carbon
,”
Diamond Relat. Mater.
13
(
4
),
1412
1415
(
2004
).
61.
R.
Long
and
O. V.
Prezhdo
, “
Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles
,”
J. Am. Chem. Soc.
136
(
11
),
4343
4354
(
2014
).
62.
A.
Block
,
M.
Liebel
,
R.
Yu
,
M.
Spector
,
Y.
Sivan
,
G.
de Abajo
,
F. J.
van Hulst
, and
N. F
van Hulst
, “
Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy
,”
Sci. Adv.
5
(
5
),
eaav8965
(
2019
).
63.
M. S.
Brown
and
C. B.
Arnold
, “
Fundamentals of laser-material interaction and application to multiscale surface modification
,” in
Laser Precision Microfabrication
, edited by
K.
Sugioka
,
M.
Meunier
, and
A.
Piqué
(
Springer
,
Berlin
,
2010
), pp.
91
120
.
64.
Y.
Li
,
Q.
Sun
,
S.
Zu
,
X.
Shi
,
Y.
Liu
,
X.
Hu
,
K.
Ueno
,
Q.
Gong
, and
H.
Misawa
, “
Correlation between near-field enhancement and dephasing time in plasmonic dimers
,”
Phys. Rev. Lett.
124
(
16
),
163901
(
2020
).

Supplementary Material

You do not currently have access to this content.