All-inorganic CsPbBr3 perovskite doped with alkali metal atoms has been attracting increasing attention due to its superior optoelectronic properties. However, there still exists significant uncertainty regarding the doping mechanism. One view of the mechanism is that alkali metal atoms tend to substitute Cs in CsPbBr3 crystals. Another view is that Li and Na tend to intercalate into interstitial sites because their radii are much smaller than that of Cs. To elucidate the doping mechanism, it is necessary to investigate the point defects physics of alkali metal elements in CsPbBr3. In this work, by using first-principles calculations we find that alkali metal atoms energetically prefer to substitute for Cs or Pb atoms in CsPbBr3 crystals under different chemical potential conditions. To determine the alkali metal atoms doping site, one should consider the chemical potential of synthesis conditions, the dopant valence states, and atomic radii. Notably, alkali metal atoms doping mainly introduces shallow levels, which is helpful for improving the p-type conductivity of CsPbBr3.

1.
J.
Song
,
J.
Li
,
X.
Li
,
L.
Xu
,
Y.
Dong
, and
H.
Zeng
, “
Quantum Dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)
,”
Adv. Mater.
27
(
44
),
7162
(
2015
).
2.
X.
Li
,
Y.
Wu
,
S.
Zhang
,
B.
Cai
,
Y.
Gu
,
J.
Song
, and
H.
Zeng
, “
Cspbx3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes
,”
Adv. Funct. Mater.
26
(
15
),
2435
2445
(
2016
).
3.
K.
Lin
,
J.
Xing
,
L. N.
Quan
,
F. P. G.
de Arquer
,
X.
Gong
,
J.
Lu
,
L.
Xie
,
W.
Zhao
,
D.
Zhang
,
C.
Yan
,
W.
Li
,
X.
Liu
,
Y.
Lu
,
J.
Kirman
,
E. H.
Sargent
,
Q.
Xiong
, and
Z.
Wei
, “
Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent
,”
Nature
562
(
7726
),
245
(
2018
).
4.
R. J.
Sutton
,
G. E.
Eperon
,
L.
Miranda
,
E. S.
Parrott
,
B. A.
Kamino
,
J. B.
Patel
,
M. T.
Horantner
,
M. B.
Johnston
,
A. A.
Haghighirad
,
D. T.
Moore
, and
H. J.
Snaith
, “
Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells
,”
Adv. Energy Mater.
6
(
8
),
1502458
(
2016
).
5.
R. E.
Beal
,
D. J.
Slotcavage
,
T.
Leijtens
,
A. R.
Bowring
,
R. A.
Belisle
,
W. H.
Nguyen
,
G. F.
Burkhard
,
E. T.
Hoke
, and
M. D.
McGehee
, “
Cesium lead halide perovskites with improved stability for tandem solar cells
,”
J. Phys. Chem. Lett.
7
(
5
),
746
751
(
2016
).
6.
C.
Yi
,
J.
Luo
,
S.
Meloni
,
A.
Boziki
,
N.
Ashari-Astani
,
C.
Gratzel
,
S. M.
Zakeeruddin
,
U.
Rothlisberger
, and
M.
Gratzel
, “
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells
,”
Energy Environ. Sci.
9
(
2
),
656
662
(
2016
).
7.
Y.
Zhao
,
Y.
Wang
,
J.
Duan
,
X.
Yang
, and
Q.
Tang
, “
Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells
,”
J. Mater. Chem. A
7
(
12
),
6877
6882
(
2019
).
8.
R.
Begum
,
M. R.
Parida
,
A. L.
Abdelhady
,
B.
Murali
,
N. M.
Alyami
,
G. H.
Ahmed
,
M. N.
Hedhili
,
O. M.
Bakr
, and
O. F.
Mohammed
, “
Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping
,”
J. Am. Chem. Soc.
139
(
2
),
731
737
(
2017
).
9.
J.
Yin
,
G. H.
Ahmed
,
O. M.
Bakr
,
J. -L.
Bredas
, and
O. F.
Mohammed
, “
Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite
,”
ACS Energy Lett.
4
(
3
),
789
795
(
2019
).
10.
Z. -L.
Yu
,
Y. -Q.
Zhao
,
Q.
Wan
,
B.
Liu
,
J. -L.
Yang
, and
M. -Q.
Cai
, “
Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr3
,”
J. Phys.: Condes. Matter
32
(
20
),
205504
(
2020
).
11.
G.
Huang
,
C.
Wang
,
S.
Xu
,
S.
Zong
,
J.
Lu
,
Z.
Wang
,
C.
Lu
, and
Y.
Cui
, “
Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange
,”
Adv. Mater.
29
(
29
),
1700095
(
2017
).
12.
D.
Parobek
,
Y.
Dong
,
T.
Qiao
, and
D.
Son
, “
Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals
,”
Chem. Mater.
30
(
9
),
2939
2944
(
2018
).
13.
F.
Li
,
Z.
Xia
,
Y.
Gong
,
L.
Gu
, and
Q.
Liu
, “
Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion Co-substitution exchange reaction
,”
J. Mater. Chem. C
5
(
36
),
9281
9287
(
2017
).
14.
W.
van der Stam
,
J J.
Geuchies
,
T.
Altantzis
,
K. H. W.
van den Bos
,
J. D.
Meeldijk
,
S.
Van Aert
,
S.
Bals
,
D.
Vanmaekelbergh
, and
C.
de Mello Donega
, “
Highly emissive divalent-Ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange
,”
J. Am. Chem. Soc.
139
(
11
),
4087
4097
(
2017
).
15.
J. -S.
Yao
,
J.
Ge
,
B. -N.
Han
,
K. -H.
Wang
,
H. -B.
Yao
,
H. -L.
Yu
,
J. -H.
Li
,
B. -S.
Zhu
,
J. -Z.
Song
,
C.
Chen
,
Q.
Zhang
,
H. -B.
Zeng
,
Y.
Luo
, and
S. -H.
Yu
, “
Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes
,”
J. Am. Chem. Soc.
140
(
10
),
3626
3634
(
2018
).
16.
M.
Liu
,
G.
Zhong
,
Y.
Yin
,
J.
Miao
,
K.
Li
,
C.
Wang
,
X.
Xu
,
C.
Shen
, and
H.
Meng
, “
Aluminum-Doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight
,”
Adv. Sci.
4
(
11
),
1700335
(
2017
).
17.
C.
Bi
,
S.
Wang
,
Q.
Li
,
S.
Kershaw
,
J.
Tian
, and
A. L.
Rogach
, “
Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission
,”
J. Phys. Chem. Lett.
10
(
5
),
943
952
(
2019
).
18.
S.
Zhou
,
Y.
Ma
,
G.
Zhou
,
X.
Xu
,
M.
Qin
,
Y.
Li
,
Y. -J.
Hsu
,
H.
Hu
,
G.
Li
,
N.
Zhao
,
J.
Xu
, and
X.
Lu
, “
Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport
,”
ACS Energy Lett.
4
(
2
),
534
(
2019
).
19.
J.
Duan
,
Y.
Zhao
,
X.
Yang
,
Y.
Wang
,
B.
He
, and
Q.
Tang
, “
Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V
,”
Adv. Energy Mater.
8
(
31
),
1802346
(
2018
).
20.
H.
Wang
,
X.
Zhao
,
B.
Zhang
, and
Z.
Xie
, “
Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films
,”
J. Mater. Chem. C
7
(
19
),
5596
5603
(
2019
).
21.
Q.
Jiang
,
M.
Chen
,
J.
Li
,
M.
Wang
,
X.
Zeng
,
T.
Besara
,
J.
Lu
,
Y.
Xin
,
X.
Shan
,
B.
Pan
,
C.
Wang
,
S.
Lin
,
T.
Siegrist
,
Q.
Xiao
, and
Z.
Yu
, “
Electrochemical doping of halide perovskites with Ion intercalation
,”
ACS Nano
11
(
1
),
1073
1079
(
2017
).
22.
Q.
Jiang
,
X.
Zeng
,
N.
Wang
,
Z.
Xiao
,
Z.
Guo
, and
J.
Lu
, “
Electrochemical lithium doping induced property changes In halide perovskite CsPbBr3 crystal
,”
ACS Energy Lett.
3
(
1
),
264
269
(
2018
).
23.
G.
Shao
,
S.
Liu
,
L.
Ding
,
Z.
Zhang
,
W.
Xiang
, and
X.
Liang
, “
KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes
,”
Chem. Eng. J.
375
,
122031
(
2019
).
24.
Y.
Li
,
J.
Duan
,
H.
Yuan
,
Y.
Zhao
,
B.
He
, and
Q.
Tang
, “
Lattice modulation of alkali metal cations doped Cs1-xRxPbBr3 halides for inorganic perovskite solar cells
,”
Sol. RRL
2
(
10
),
1800164
(
2018
).
25.
R.
Zhang
,
Y.
Yuan
,
J.
Li
,
Z.
Qin
,
Q.
Zhang
,
B.
Xiong
,
Z.
Wang
,
F.
Chen
,
X.
Du
, and
W.
Yang
, “
Ni and K ion doped CsPbX3 NCs for the improvement of luminescence properties by a facile synthesis method in ambient Air
,”
J. Lumin.
221
,
117044
(
2020
).
26.
H.
Zhang
,
R.
Yuan
,
M.
Jin
,
Z.
Zhang
,
Y.
Yu
,
W.
Xiang
, and
X.
Liang
, “
Rb+-doped CsPbBr3 quantum dots with multi-color stabilized in borosilicate glass via crystallization
,”
J. Eur. Ceram. Soc.
40
(
1
),
94
102
(
2020
).
27.
J.
Li
,
X.
Du
,
G.
Niu
,
H.
Xie
,
Y.
Chen
,
Y.
Yuan
,
Y.
Gao
,
H.
Xiao
,
J.
Tang
,
A.
Pan
, and
B.
Yang
, “
Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance x-ray detection
,”
ACS Appl. Mater. Interfaces
12
(
1
),
989
996
(
2020
).
28.
S.
Li
,
Z.
Shi
,
F.
Zhang
,
L.
Wang
,
Z.
Ma
,
D.
Yang
,
Z.
Yao
,
D.
Wu
,
T. -T.
Xu
,
Y.
Tian
,
Y.
Zhang
,
C.
Shan
, and
X. J.
Li
, “
Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices
,”
Chem. Mater.
31
(
11
),
3917
3928
(
2019
).
29.
P.
Todorovic
,
D.
Ma
,
B.
Chen
,
R.
Quintero-Bermudez
,
M. I.
Saidaminov
,
Y.
Dong
,
Z. -H.
Lu
, and
E. H.
Sargent
, “
Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals
,”
Adv. Opt. Mater.
7
(
24
),
1901440
(
2019
).
30.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis Set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
31.
P. E.
Blöchl
, “
Projector augmented wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
33.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
34.
J.
Lin
,
M.
Lai
,
L.
Dou
,
C. S.
Kley
,
H.
Chen
,
F.
Peng
,
J.
Sun
,
D.
Lu
,
S. A.
Hawks
,
C.
Xie
,
F.
Cui
,
A. P.
Alivisatos
,
D. T.
Limmer
, and
P.
Yang
, “
Thermochromic halide perovskite solar cells
,”
Nat. Mater.
17
(
3
),
261
(
2018
).
35.
A.
Marstrander
and
C.
Møller
, “
The structure of white cesium lead (II) bromide, CsPbBr3
,”
Mat. Fys. Medd. Dan. Vid. Selsk.
35
,
5
(
1966
).
36.
X.
Wu
,
S.
Xiong
,
Z.
Liu
,
J.
Chen
,
J.
Shen
,
T.
Li
,
P.
Wu
, and
P.
Chu
, “
Green light stimulates terahertz emission from mesocrystal microspheres
,”
Nat. Nanotechnol.
6
(
2
),
102
105
(
2011
).
37.
J.
Wang
,
S. J.
Xiong
,
X. L.
Wu
,
T. H.
Li
, and
P. K.
Chu
, “
Glycerol-bonded 3C-SiC nanocrystal solid films exhibiting broad and stable violet to blue-green emission
,”
Nano Lett.
10
(
4
),
1466
1471
(
2010
).
38.
P.
Zhao
,
D.
Hu
, and
X.
Wu
, “
Quantum confinement of Si nanosphere with radius smaller than 1.2nm
,”
Chin. Phys. Lett.
22
(
6
),
1492
1495
(
2005
).
39.
C.
Stoumpos
,
C. D.
Malliakas
,
J.
Peters
,
Z.
Liu
,
M.
Sebastian
,
J.
Im
,
T. C.
Chasapis
,
A. C.
Wibowo
,
D. Y.
Chung
,
A. J.
Freeman
,
B. W.
Wessels
, and
M. G.
Kanatzidis
, “
Crystal growth of the perovskite semiconductor CsPbBr3: A New material for high-energy radiation detection
,”
Cryst. Growth Des.
13
(
7
),
2722
2727
(
2013
).
40.
S.
Yakunin
,
L.
Protesescu
,
F.
Krieg
,
M.
Bodnarchuk
,
G.
Nedelcu
,
M.
Humer
,
G.
De Luca
,
M.
Fiebig
,
W.
Heiss
, and
M.
Kovalenko
, “
Low-threshold amplified spontaneous emission and lasing form colloidal nanocrystals of caesium lead halide perovskites
,”
Nat. Commun.
6
,
8056
(
2015
).
41.
M.
Kulbak
,
D.
Cahen
, and
G.
Hodes
, “
How important Is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells
,”
J. Phys. Chem. Lett.
6
(
13
),
2452
2456
(
2015
).
42.
M.
Kulbak
,
S.
Gupta
,
N.
Kedem
,
I.
Levine
,
T.
Bendikov
,
G.
Hodes
, and
D.
Cahen
, “
Cesium enhances long-term stability of lead bromide perovskite-based solar cells
,”
J. Phys. Chem. Lett.
7
(
1
),
167
172
(
2016
).
43.
A. F.
Akbulatov
,
L. A.
Frolova
,
N. N.
Dremova
,
I.
Zhidkov
,
V. M.
Martynenko
,
S. A.
Tsarev
,
S. Y.
Luchkin
,
E. Z.
Kurniaev
,
S. M.
Aldoshin
,
K. J.
Stevenson
, and
P. A.
Troshin
, “
Light or heat: What is killing lead halide perovskites under solar cell operation conditions?
,”
J. Phys. Chem. Lett.
11
(
1
),
333
339
(
2020
).
44.
C.
Persson
,
Y. -J.
Zhao
,
S.
Lany
, and
A.
Zunger
, “
N-type doping of CuInSe2 and CuGaSe2
,”
Phys. Rev. B
72
(
3
),
035211
(
2005
).
45.
S. -H.
Wei
, “
Overcoming the doping bottleneck in semiconductors
,”
Comput. Mater. Sci.
30
(
3
),
337
348
(
2004
).
46.
X. L.
Wu
,
Y. F.
Mei
,
G, G.
Siu
,
K. L.
Wong
,
K.
Moulding
,
M. J.
Stokes
,
C. L.
Fu
, and
X. M.
Bao
, “
Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures
,”
Phys. Rev. Lett.
86
(
14
),
3000
3003
(
2001
).
47.
X. L.
Wu
,
S. J.
Xiong
,
G. G.
Siu
,
G. S.
Huang
,
Y. F.
Mei
,
Z. Y.
Zhang
,
S. S.
Deng
, and
C.
Tan
, “
Optical emission from excess Si defect centers in Si nanostructures
,”
Phys. Rev. Lett.
91
(
15
),
157402
(
2003
).
48.
H. T.
Chen
,
S. J.
Xiong
,
X. L.
Wu
,
J.
Zhu
,
J. C.
Shen
, and
P.
Chu
, “
Tin oxide nanoribbons with vacancy structures in luminescence-sensitive oxygen sensing
,”
Nano Lett.
9
(
5
),
1926
1931
(
2009
).
49.
X. L.
Wu
,
S. J.
Xiong
,
J.
Zhu
,
J.
Wang
,
J. C.
Shen
, and
P. K.
Chu
, “
Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence
,”
Nano Lett.
9
(
12
),
4053
4060
(
2009
).
50.
J.
Fan
,
X.
Wu
, and
T.
Qiu
, “
Experimental evidence for quantum confinement in 3C-SiC nanoparticles
,”
Physics
34
(
8
),
570
572
(
2005
).

Supplementary Material

You do not currently have access to this content.