Cholesteric liquid crystal elastomers (CLCEs), which exhibit selective reflection derived from a helical molecular structure, are receiving a great deal of attention because they deform largely due to the cross-linked polymer chains. Reflection wavelength of a CLCE film can be tuned by mechanical stretching that induces a change in the helical pitch. However, stretch-induced reflection wavelength tuning has some issues such as a large load required and a limited tuning range. In this paper, reflection wavelength of a CLCE film is tuned facilely and widely by bending. Outward and inward bendings cause blue and red shifts, respectively. Bending–buckling load required for the reflection tuning is much lower than stretching one, which is proved experimentally and theoretically. By considering the bending behavior of materials, we can impose large strain on a CLCE film and tune reflection wavelength over 300 nm, which is almost the whole region of visible light. This wideband reflection wavelength tuning by low-load bending leads to expanding applications of CLCEs.

1.
T. J.
White
,
M. E.
McConney
, and
T. J.
Bunning
, “
Dynamic color in stimuli-responsive cholesteric liquid crystals
,”
J. Mater. Chem.
20
,
9832
9847
(
2010
).
2.
K. M.
Lee
,
V. P.
Tondiglia
,
M. E.
McConney
,
L. V.
Natarajan
,
T. J.
Bunning
, and
T. J.
White
, “
Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals
,”
ACS Photonics
1
,
1033
1041
(
2014
).
3.
Y.
Inoue
,
S.
Sasaki
, and
H.
Moritake
, “
High-quality tuning of cholesteric liquid crystal lasers based on polymer composite system
,”
J. Appl. Phys.
127
,
083104
(
2020
).
4.
N.
Tamaoki
, “
Cholesteric liquid crystals for color information technology
,”
Adv. Mater.
13
,
1135
1147
(
2001
).
5.
M. E.
McConney
,
M.
Rumi
,
N. P.
Godman
,
U. N.
Tohgha
, and
T. J.
Bunning
, “
Photoresponsive structural color in liquid crystalline materials
,”
Adv. Opt. Mater.
7
,
1900429
(
2019
).
6.
H.
Nishikawa
,
D.
Mochizuki
,
H.
Higuchi
,
Y.
Okumura
, and
H.
Kikuchi
, “
Reversible broad-spectrum control of selective reflections of chiral nematic phases by closed-/open-type axially chiral azo dopants
,”
ChemistryOpen
6
,
710
720
(
2017
).
7.
M.
Mitov
, “
Cholesteric liquid crystals with a broad light reflection band
,”
Adv. Mater.
24
,
6260
6276
(
2012
).
8.
H.
Wang
,
H. K.
Bisoyi
,
L.
Wang
,
A. M.
Urbas
,
T. J.
Bunning
, and
Q.
Li
, “
Photochemically and thermally driven full-color reflection in a self-organized helical superstructure enabled by a halogen-bonded chiral molecular switch
,”
Angew. Chem. Int. Ed.
57
,
1627
1631
(
2018
).
9.
M. T.
Brannum
,
A. M.
Steele
,
M. C.
Venetos
,
L. S. T. J.
Korley
,
G. E.
Wnek
, and
T. J.
White
, “
Light control with liquid crystalline elastomers
,”
Adv. Opt. Mater.
7
,
1801683
(
2019
).
10.
D. K.
Yang
,
J. L.
West
,
L. C.
Chien
, and
J. W.
Doane
, “
Control of reflectivity and bistability in displays using cholesteric liquid crystals
,”
J. Appl. Phys.
76
,
1331
1333
(
1994
).
11.
Y.
Wang
and
Q.
Li
, “
Light-driven chiral molecular switches or motors in liquid crystals
,”
Adv. Mater.
24
,
1926
1945
(
2012
).
12.
J.
Schmidtke
,
W.
Stille
,
H.
Finkelmann
, and
S. T.
Kim
, “
Laser emission in a dye doped cholesteric polymer network
,”
Adv. Mater.
14
,
746
749
(
2002
).
13.
T.
Matsui
,
R.
Ozaki
,
K.
Funamoto
,
M.
Ozaki
, and
K.
Yoshino
, “
Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal
,”
Appl. Phys. Lett.
81
,
3741
3743
(
2002
).
14.
G.
Sanz-Enguita
,
J.
Ortega
,
C. L.
Folcia
,
I.
Aramburu
, and
J.
Etxebarria
, “
Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results
,”
J. Appl. Phys.
119
,
073102
(
2016
).
15.
N.
Herzer
,
H.
Guneysu
,
D. J. D.
Davies
,
D.
Yildirim
,
A. R.
Vaccaro
,
D. J.
Broer
,
C. W. M.
Bastiaansen
, and
A. P. H. J.
Schenning
, “
Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks
,”
J. Am. Chem. Soc.
134
,
7608
7611
(
2012
).
16.
D. J. D.
Davies
,
A. R.
Vaccaro
,
S. M.
Morris
,
N.
Herzer
,
A. P. H. J.
Schenning
, and
C. W. M.
Bastiaansen
, “
A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network
,”
Adv. Funct. Mater.
23
,
2723
2727
(
2013
).
17.
H.
Finkelmann
,
S. T.
Kim
,
A.
Muñoz
,
P.
Palffy-Muhoray
, and
B.
Taheri
, “
Tunable mirrorless lasing in cholesteric liquid crystalline elastomers
,”
Adv. Mater.
13
,
1069
1072
(
2001
).
18.
P. V.
Shibaev
,
P.
Rivera
,
D.
Teter
,
S.
Marsico
,
M.
Sanzari
,
V.
Ramakrishnan
, and
E.
Hanelt
, “
Color changing and lasing stretchable cholesteric films
,”
Opt. Express
16
,
2965
2970
(
2008
).
19.
A. M.
Martinez
,
M. K.
McBride
,
T. J.
White
, and
C. N.
Bowman
, “
Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers
,”
Adv. Funct. Mater.
30
,
2003150
(
2020
).
20.
R.
Kizhakidathazhath
,
Y.
Geng
,
V. S. R.
Jampani
,
C.
Charni
,
A.
Sharma
, and
J. P. F.
Lagerwall
, “
Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response
,”
Adv. Funct. Mater.
30
,
1909537
(
2020
).
21.
M.
Kishino
,
N.
Akamatsu
,
R.
Taguchi
,
K.
Hisano
,
O.
Tsutsumi
, and
A.
Shishido
, “
Out-of-plane strain measurement of a silicone elastomer by means of a cholesteric liquid crystal sensor
,”
J. Photopolym. Sci. Technol.
33
,
81
84
(
2020
).
22.
K.
Hisano
,
M.
Aizawa
,
M.
Ishizu
,
Y.
Kurata
,
W.
Nakano
,
N.
Akamatsu
,
C. J.
Barrett
, and
A.
Shishido
, “
Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals
,”
Sci. Adv.
3
,
e1701610
(
2017
).
23.
N.
Akamatsu
,
W.
Tashiro
,
K.
Saito
,
J.
Mamiya
,
M.
Kinoshita
,
T.
Ikeda
,
J.
Takeya
,
S.
Fujikawa
,
A.
Priimagi
, and
A.
Shishido
, “
Facile strain analysis of largely bending films by a surface-labelled grating method
,”
Sci. Rep.
4
,
5377
(
2014
).
24.
R.
Taguchi
,
N.
Akamatsu
,
K.
Kuwahara
,
K.
Tokumitsu
,
Y.
Kobayashi
,
M.
Kishino
,
K.
Yaegashi
,
J.
Takeya
, and
A.
Shishido
, “
Nanoscale analysis of surface bending strain in film substrates for preventing fracture in flexible electronic devices
,”
Adv. Mater. Interfaces
8
,
2001662
(
2021
).
25.
M. G.
James
and
J. G.
Barry
,
Mechanics of Materials
(
Cengage Learning
,
2008
).
26.
V. P.
Tondiglia
,
M.
Rumi
,
I. U.
Idehenre
,
K. M.
Lee
,
J. F.
Binzer
,
P. P.
Banerjee
,
D. R.
Evans
,
M. E.
McConney
,
T. J.
Bunning
, and
T. J.
White
, “
Electrical control of unpolarized reflectivity in polymer-stabilized cholesteric liquid crystals at oblique incidence
,”
Adv. Opt. Mater.
6
,
1800957
(
2018
).
27.
R. H.
Pritchard
,
P.
Lava
,
D.
Debruyne
, and
E. M.
Terentjev
, “
Precise determination of the Poisson ratio in soft materials with 2D digital image correlation
,”
Soft Matter
9
,
6037
6045
(
2013
).
28.
K.
Kuwahara
,
R.
Taguchi
,
M.
Kishino
,
N.
Akamatsu
,
K.
Tokumitsu
, and
A.
Shishido
, “
Experimental and theoretical analyses of curvature and surface strain in bent polymer films
,”
Appl. Phys. Express
13
,
056502
(
2020
).
29.
P.
Zhang
,
X.
Shi
,
A. P. H. J.
Schenning
,
G.
Zhou
, and
L. T.
de Haan
, “
A patterned mechanochromic photonic polymer for reversible image reveal
,”
Adv. Mater. Interfaces
7
,
1901878
(
2020
).
30.
P. V.
Shibaev
and
L.
Newman
, “
Remote optical detection of bending deformations by means of cholesteric paint
,”
Liq. Cryst.
40
,
428
432
(
2013
).
31.
K.
Miyagi
and
Y.
Teramoto
, “
Dual mechanochromism of cellulosic cholesteric liquid-crystalline films: Wide-ranging colour control and circular dichroism inversion by mechanical stimulus
,”
J. Mater. Chem. C
6
,
1370
1376
(
2018
).
32.
A.
Varanytsia
,
H.
Nagai
,
K.
Urayama
, and
P.
Palffy-Muhoray
, “
Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain
,”
Sci. Rep.
5
,
17739
(
2015
).

Supplementary Material

You do not currently have access to this content.