Although titanium dioxide (TiO2) is a promising constituent of the metasurface operative in the visible, the experimental demonstration is limited so far because TiO2 is intrinsically chemically/physically stable and is hard to be processed into nanostructures with high precision. In this paper, we develop a facile pathway to fabricate the TiO2 metasurface via oxidation of Ti nanoparticle array that can be made by the conventional lift-off process. Under an optimized heat-treatment procedure in air, Ti nanoparticles are converted to TiO2 nanoparticles with a size expansion predictable by the molar volume mismatch between Ti and TiO2, while the global periodic arrangement is retained. We apply this technique to a Ti nanoparticle array fabricated on the phosphor plate of yttrium aluminum garnet doped with Ce3+ (YAG:Ce) and demonstrate the directional outcoupling of emission through the metasurface. The photoluminescence from the YAG:Ce plate is directionally enhanced in the forward direction, as large as three times as much compared to that from the flat YAG:Ce plate without the metasurface. Because of the high transparency and lossless feature of TiO2 in the visible, the present metasurface does not lower the total quantum yield of the system consisting of the YAG:Ce plate and the TiO2 metasurface, which is beneficial for the solid-state-lighting application.

1.
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Planar photonics with metasurfaces
,”
Science
339
,
1232009
(
2013
).
2.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mater.
13
,
139
150
(
2014
).
3.
A.
Vaskin
,
R.
Kolkowski
,
A. F.
Koenderink
, and
I.
Staude
, “
Light-emitting metasurfaces
,”
Nanophotonics
8
,
1151
(
2019
).
4.
S.
Zou
,
N.
Janel
, and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
,”
J. Chem. Phys.
120
,
10871
(
2004
).
5.
B.
Auguie
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
,
143902
(
2008
).
6.
Y. Z.
Chu
,
E.
Schonbrun
,
T.
Yang
, and
K. B.
Crozier
, “
Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays
,”
Appl. Phys. Lett.
93
,
181108
(
2008
).
7.
W.
Wang
,
M.
Ramezani
,
A. I.
Väkeväinen
,
P.
Törmä
,
J. G.
Rivas
, and
T. W.
Odom
, “
The rich photonic world of plasmonic nanoparticle arrays
,”
Mater. Today
21
,
303
314
(
2018
).
8.
V. G.
Kravets
,
A. V.
Kabashin
,
W. L.
Barnes
, and
A. N.
Grigorenko
, “
Plasmonic surface lattice resonances: A review of properties and applications
,”
Chem. Rev.
118
,
5912
5951
(
2018
).
9.
F.
Zhang
,
F.
Tang
,
X.
Xu
,
P.-M.
Adam
,
J.
Martin
, and
J.
Plain
, “
Influence of order-to-disorder transitions on the optical properties of the aluminum plasmonic metasurface
,”
Nanoscale
12
,
23173
23182
(
2020
).
10.
F.
Zhang
,
J.
Plain
,
D.
Gérard
, and
J.
Martin
, “
Surface roughness and substrate induced symmetry-breaking: Influence on the plasmonic properties of aluminum nanostructure arrays
,”
Nanoscale
13
,
1915
1926
(
2021
).
11.
P.
Offermans
,
M. C.
Schaafsma
,
S. R.
Rodriguez
,
Y.
Zhang
,
M.
Crego-Calama
,
S. H.
Brongersma
, and
J.
Gómez Rivas
, “
Universal scaling of the figure of merit of plasmonic sensors
,”
ACS Nano
5
,
5151
(
2011
).
12.
W.
Zhou
,
M.
Dridi
,
J. Y.
Suh
,
C. H.
Kim
,
D. T.
Co
,
M. R.
Wasielewski
,
G. C.
Schatz
, and
T. W.
Odom
, “
Lasing action in strongly coupled plasmonic nanocavity arrays
,”
Nat. Nanotechnol.
8
,
506
(
2013
).
13.
G.
Lozano
,
D. J.
Louwers
,
S. R. K.
Rodriguez
,
S.
Murai
,
O. T. A.
Jansen
,
M. A.
Verschuuren
, and
J. G.
Rivas
, “
Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources
,”
Light Sci. Appl.
2
,
e66
(
2013
).
14.
R.
Kamakura
,
S.
Murai
,
Y.
Yokobayashi
,
K.
Takashima
,
M.
Kuramoto
,
K.
Fujita
, and
K.
Tanaka
, “
Enhanced photoluminescence and directional white-light generation by plasmonic array
,”
J. Appl. Phys.
124
,
213105
(
2018
).
15.
G.
Lozano
,
S. R. K.
Rodriguez
,
M. A.
Verschuuren
, and
J.
Gómez Rivas
, “
Metallic nanostructures for efficient led lighting
,”
Light Sci. Appl.
5
,
e16080
(
2016
).
16.
K.
Itoh
,
T.
Kawamoto
,
H.
Amano
,
K.
Hiramatsu
, and
I.
Akasaki
, “
Metalorganic vapor phase epitaxial growth and properties of GaN/Al0.1Ga0.9N layered structures
,”
Jpn. J. Appl. Phys.
30
,
1924
1927
(
1991
).
17.
S.
Nakamura
,
M.
Senoh
, and
T.
Mukai
, “
P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes
,”
Jpn. J. Appl. Phys.
32
,
L8
L11
(
1993
).
18.
E. F.
Schubert
and
J. K.
Kim
, “
Solid-state light sources getting smart
,”
Science
308
,
1274
1278
(
2005
).
19.
S.
Pimputkar
,
J. S.
Speck
,
S. P.
DenBaars
, and
S.
Nakamura
, “
Prospects for LED lighting
,”
Nat. Photonics
3
,
180
(
2009
).
20.
G.
Pellegrini
,
G.
Mattei
, and
P.
Mazzoldi
, “
Light extraction with dielectric nanoantenna arrays
,”
ACS Nano
3
,
2715
(
2009
).
21.
S.
Gorsky
,
R.
Zhang
,
A.
Gok
,
R.
Wang
,
K.
Kebede
,
A.
Lenef
,
M.
Raukas
, and
L. D.
Negro
, “
Directional light emission enhancement from led-phosphor converters using dielectric Vogel spiral arrays
,”
APL Photonics
3
,
126103
(
2018
).
22.
Y.
Huang
,
H.
Xu
,
Y.
Lu
, and
Y.
Chen
, “
All-dielectric metasurface for achieving perfect reflection at visible wavelengths
,”
J. Phys. Chem. C
122
,
2990
2996
(
2018
).
23.
B.
Yang
,
W.
Liu
,
Z.
Li
,
H.
Cheng
,
D.-Y.
Choi
,
S.
Chen
, and
J.
Tian
, “
Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces
,”
Nano Lett.
19
,
4221
4228
(
2019
).
24.
H.
Sun
,
A.
Piquette
,
M.
Raukas
, and
T.
Moustakas
, “
Enhancement of yellow light extraction efficiency of Y3Al5O12:Ce3+ ceramic converters using a 2-d TiO2 hexagonal-lattice nanocylinder photonic crystal layer
,”
IEEE Photonics J.
8
,
1
10
(
2016
).
25.
S.
Sun
,
Z.
Zhou
,
C.
Zhang
,
Y.
Gao
,
Z.
Duan
,
S.
Xiao
, and
Q.
Song
, “
All-dielectric full-color printing with TiO2 metasurfaces
,”
ACS Nano
11
,
4445
(
2017
).
26.
C.
Zhang
,
J.
Jing
,
Y.
Wu
,
Y.
Fan
,
W.
Yang
,
S.
Wang
,
Q.
Song
, and
S.
Xiao
, “
Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response
,”
ACS Nano
14
,
1418
1426
(
2020
).
27.
P.
Gutruf
,
C.
Zou
,
W.
Withayachumnankul
,
M.
Bhaskaran
,
S.
Sriram
, and
C.
Fumeaux
, “
Mechanically tunable dielectric resonator metasurfaces at visible frequencies
,”
ACS Nano
10
,
133
141
(
2016
).
28.
C.
Marichy
,
N.
Muller
,
L. S.
Froufe-Pérez
, and
F.
Scheffold
, “
High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide
,”
Sci. Rep.
6
,
21818
(
2016
).
29.
R. C.
Devlin
,
M.
Khorasaninejad
,
W. T.
Chen
,
J.
Oh
, and
F.
Capasso
, “
Broadband high-efficiency dielectric metasurfaces for the visible spectrum
,”
Proc. Natl. Acad. Sci.
113
,
10473
10478
(
2016
).
30.
E.
Shkondin
,
O.
Takayama
,
J. M.
Lindhard
,
P. V.
Larsen
,
M. D.
Mar
,
F.
Jensen
, and
A. V.
Lavrinenko
, “
Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition
,”
J. Vac. Sci. Technol., A
34
,
031605
(
2016
).
31.
B.
Groever
,
W. T.
Chen
, and
F.
Capasso
, “
Meta-lens doublet in the visible region
,”
Nano Lett.
17
,
4902
4907
(
2017
).
32.
M.
Khorasaninejad
,
A. Y.
Zhu
,
C.
Roques-Carmes
,
W. T.
Chen
,
J.
Oh
,
I.
Mishra
,
R. C.
Devlin
, and
F.
Capasso
, “
Polarization-insensitive metalenses at visible wavelengths
,”
Nano Lett.
16
,
7229
7234
(
2016
).
33.
K.
Aono
,
S.
Aki
,
K.
Sueyoshi
,
H.
Hisamoto
, and
T.
Endo
, “
Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition
,”
Jpn. J. Appl. Phys.
55
,
08RE01
(
2016
).
34.
S.
Checcucci
,
T.
Bottein
,
M.
Gurioli
,
L.
Favre
,
D.
Grosso
, and
M.
Abbarchi
, “
Multifunctional metasurfaces based on direct nanoimprint of titania sol–gel coatings
,”
Adv. Opt. Mater.
7
,
1801406
(
2019
).
35.
S.
Murai
,
M.
Saito
,
H.
Sakamoto
,
M.
Yamamoto
,
R.
Kamakura
,
T.
Nakanishi
,
K.
Fujita
,
M.
Verschuuren
,
Y.
Hasegawa
, and
K.
Tanaka
, “
Directional outcoupling of photoluminescence from Eu (III)-complex thin films by plasmonic array
,”
APL Photonics
2
,
026104
(
2017
).
36.
A.
Lenef
,
A.
Piquette
, and
J.
Kelso
, “
Thermodynamics of light extraction from luminescent materials
,”
ECS J. Solid State Sci. Technol.
7
,
R3211
R3226
(
2018
).
37.
C.
Wiesmann
,
K.
Bergenek
,
N.
Linder
, and
U.
Schwarz
, “
Photonic crystal LEDs—Designing light extraction
,”
Laser Photonics Rev.
3
,
262
286
(
2009
).
38.
S.
Gorsky
,
W. A.
Britton
,
Y.
Chen
,
J.
Montaner
,
A.
Lenef
,
M.
Raukas
, and
L. D.
Negro
, “
Engineered hyperuniformity for directional light extraction
,”
APL Photonics
4
,
110801
(
2019
).
39.
A.
Mao
and
R. F.
Karlicek
, “
Surface patterning of nonscattering phosphors for light extraction
,”
Opt. Lett.
38
,
2796
2799
(
2013
).
40.
J. C.
de Mello
,
H. F.
Wittmann
, and
R. H.
Friend
, “
An improved experimental determination of external photoluminescence quantum efficiency
,”
Adv. Mater.
9
,
230
232
(
1997
).
41.
S.
Murai
,
K.
Noguchi
,
G. W.
Castellanos
,
S.
Wang
,
K.
Tanaka
, and
J. G.
Rivas
, “
Light conversion efficiency of emitters on top of plasmonic and dielectric arrays of nanoparticles
,”
ECS J. Solid State Sci. Technol.
9
,
011614
(
2019
).
You do not currently have access to this content.