Electron paramagnetic resonance (EPR) is used to identify and characterize neutral zinc acceptors in Zn-doped β-Ga2O3 crystals. Two EPR spectra are observed at low temperatures, one from Zn ions at tetrahedral Ga(1) sites (the ZnGa10 acceptor) and one from Zn ions at octahedral Ga(2) sites (the ZnGa20 acceptor). These Zn acceptors are small polarons, with the unpaired spin localized in each case on a threefold coordinated oxygen O(I) ion adjacent to the Zn ion. Resolved hyperfine interactions with neighboring 69Ga and 71Ga nuclei allow the EPR spectra from the two acceptors to be easily distinguished: ZnGa10 acceptors interact equally with two Ga(2) ions and ZnGa20 acceptors interact unequally with a Ga(1) ion and a Ga(2) ion. The as-grown crystals are compensated, with the Zn ions initially present as singly ionized acceptors (ZnGa1 and ZnGa2). Exposing a crystal to 325 nm laser light, while being held at 140 K, primarily produces neutral ZnGa20 acceptors when photoinduced holes are trapped at ZnGa2 acceptors. This suggests that there may be significantly more Zn ions at Ga(2) sites than at Ga(1) sites. Warming the crystal briefly to room temperature, after removing the light, destroys the EPR spectrum from the shallower ZnGa20 acceptors and produces the EPR spectrum from the more stable ZnGa10 acceptors. The ZnGa20 acceptors decay in the 240–260 K region with a thermal activation energy near 0.65 eV, similar to MgGa20 acceptors, whereas the slightly deeper ZnGa10 acceptors decay close to room temperature with an approximate thermal activation energy of 0.78 eV.

1.
M. D.
McCluskey
, “
Point defects in Ga2O3
,”
J. Appl. Phys.
127
,
101101
(
2020
).
2.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
K. H. L.
Zhang
, “
Recent progress on the electronic structure, defect, and doping properties of Ga2O3
,”
APL Mater.
8
,
020906
(
2020
).
3.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
, “
On the feasibility of p-type Ga2O3
,”
Appl. Phys. Lett.
112
,
032108
(
2018
).
4.
J. L.
Lyons
, “
A survey of acceptor dopants for β-Ga2O3
,”
Semicond. Sci. Technol.
33
,
05LT02
(
2018
).
5.
H.
Peelaers
,
J. L.
Lyons
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
Deep acceptors and their diffusion in Ga2O3
,”
APL Mater.
7
,
022519
(
2019
).
6.
M. J.
Tadjer
,
J. L.
Lyons
,
N.
Nepal
,
J. A.
Freitas
, Jr.
,
A. D.
Koehler
, and
G. M.
Foster
, “
Review—Theory and characterization of doping and defects in β-Ga2O3
,”
ECS J. Solid State Sci. Technol.
8
,
Q3187
(
2019
).
7.
T.
Gake
,
Y.
Kumagai
, and
F.
Oba
, “
First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs
,”
Phys. Rev. Mater.
3
,
044603
(
2019
).
8.
J. L.
Lyons
, “
Electronic properties of Ga2O3 polymorphs
,”
ECS J. Solid State Sci. Technol.
8
,
Q3226
(
2019
).
9.
Y. K.
Frodason
,
K. M.
Johansen
,
L.
Vines
, and
J. B.
Varley
, “
Self-trapped hole and impurity-related broad luminescence in β-Ga2O3
,”
J. Appl. Phys.
127
,
075701
(
2020
).
10.
O. F.
Schirmer
, “
O bound small polarons in oxide materials
,”
J. Phys.: Condens. Matter
18
,
R667
(
2006
).
11.
S.
Lany
and
A.
Zunger
, “
Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors
,”
Phys. Rev. B
80
,
085202
(
2009
).
12.
O. F.
Schirmer
, “
Holes bound as small polarons to acceptor defects in oxide materials: Why are their thermal ionization energies so high?
,”
J. Phys.: Condens. Matter
23
,
334218
(
2011
).
13.
S.
Lany
, “
Predicting polaronic defect states by means of generalized Koopmans density functional calculations
,”
Phys. Status Solidi B
248
,
1052
(
2011
).
14.
S.
Lany
and
A.
Zunger
, “
Dual nature of acceptors in GaN and ZnO: The curious case of the shallow MgGa deep state
,”
Appl. Phys. Lett.
96
,
142114
(
2010
).
15.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Shallow versus deep nature of Mg acceptors in nitride semiconductors
,”
Phys. Rev. Lett.
108
,
156403
(
2012
).
16.
J. K.
Sheu
and
G. C.
Chi
, “
The doping process and dopant characteristics of GaN
,”
J. Phys.: Condens. Matter
14
,
R657
(
2002
).
17.
M. A.
Reshchikov
and
H.
Morkoç
, “
Luminescence properties of defects in GaN
,”
J. Appl. Phys.
97
,
061301
(
2005
).
18.
B. E.
Kananen
,
L. E.
Halliburton
,
E. M.
Scherrer
,
K. T.
Stevens
,
G. K.
Foundos
,
K. B.
Chang
, and
N. C.
Giles
, “
Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
111
,
072102
(
2017
).
19.
Q. D.
Ho
,
T.
Frauenheim
, and
P.
Deák
, “
Theoretical confirmation of the polaron model for the Mg acceptor in β-Ga2O3
,”
J. Appl. Phys.
124
,
145702
(
2018
).
20.
D.
Skachkov
and
W. R. L.
Lambrecht
, “
Computational study of electron paramagnetic resonance parameters for Mg and Zn impurities in β-Ga2O3
,”
Appl. Phys. Lett.
114
,
202102
(
2019
).
21.
C. A.
Lenyk
,
T. D.
Gustafson
,
S. A.
Basun
,
L. E.
Halliburton
, and
N. C.
Giles
, “
Experimental determination of the (0/−) level for Mg acceptors in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
116
,
142101
(
2020
).
22.
T. D.
Gustafson
,
C. A.
Lenyk
,
L. E.
Halliburton
, and
N. C.
Giles
, “
Deep donor behavior of iron in β-Ga2O3 crystals: Establishing the Fe4+/3+ level
,”
J. Appl. Phys.
128
,
145704
(
2020
).
23.
H. A.
Wang
,
C. H.
Lee
,
F. A.
Kröger
, and
R. T.
Cox
, “
Point defects in α-A12O3:Mg studied by electrical conductivity, optical absorption, and ESR
,”
Phys. Rev. B
27
,
3821
(
1983
).
24.
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
N. K.
Kalarickal
,
S.
Rajan
, and
H.
Zhao
, “
Mg acceptor doping in MOCVD (010) β-Ga2O3
,”
Appl. Phys. Lett.
117
,
222106
(
2020
).
25.
J. R.
Ritter
,
J.
Huso
,
P. T.
Dickens
,
J. B.
Varley
,
K. G.
Lynn
, and
M. D.
McCluskey
, “
Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
,
052101
(
2018
).
26.
M.
Saleh
,
A.
Bhattacharyya
,
J. B.
Varley
,
S.
Swain
,
J.
Jesenovec
,
S.
Krishnamoorthy
, and
K.
Lynn
, “
Electrical and optical properties of Zr doped β-Ga2O3 single crystals
,”
Appl. Phys. Express
12
,
085502
(
2019
).
27.
M.
Saleh
,
J. B.
Varley
,
J.
Jesenovec
,
A.
Bhattacharyya
,
S.
Krishnamoorthy
,
S.
Swain
, and
K.
Lynn
, “
Degenerate doping in β-Ga2O3 single crystals through Hf-doping
,”
Semicond. Sci. Technol.
35
,
04LT01
(
2020
).
28.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
,
D.
Klimm
, and
M.
Bickermann
, “
On the bulk β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Cryst. Growth
404
,
184
(
2014
).
29.
J. D.
Blevins
,
K.
Stevens
,
A.
Lindsey
,
G.
Foundos
, and
L.
Sande
, “
Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates
,”
IEEE Trans. Semicond. Manuf.
32
,
466
(
2019
).
30.
T.
Onuma
,
S.
Fujioka
,
T.
Yamaguchi
,
Y.
Itoh
,
M.
Higashiwaki
,
K.
Sasaki
,
T.
Masui
, and
T.
Honda
, “
Polarized Raman spectra in β-Ga2O3 single crystals
,”
J. Cryst. Growth
401
,
330
(
2014
).
31.
C.
Kranert
,
C.
Sturm
,
R.
Schmidt-Grund
, and
M.
Grundmann
, “
Raman tensor elements of β-Ga2O3
,”
Sci. Rep.
6
,
35964
(
2016
).
32.
M. L.
Meil’man
, “
EPR of Fe3+ ions in β-Ga2O3 crystals
,”
Sov. Phys. Solid State
11
,
1403
(
1969
).
33.
C. A.
Lenyk
,
N. C.
Giles
,
E. M.
Scherrer
,
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
,
J. D.
Blevins
,
D. L.
Dorsey
, and
S.
Mou
, “
Ir4+ ions in β-Ga2O3 crystals: An unintentional deep donor
,”
J. Appl. Phys.
125
,
045703
(
2019
).
34.
A.
van der Est
, “
Continuous-wave EPR
,” in
EPR Spectroscopy: Fundamentals and Methods
, edited by
D.
Goldfarb
and
S.
Stoll
(
John Wiley & Sons
,
Chichester
,
2018
), Chap. 1, pp.
8
9
.
35.
S.
Geller
, “
Crystal structure of β-Ga2O3
,”
J. Chem. Phys.
33
,
676
(
1960
).
36.
J.
Åhman
,
G.
Svensson
, and
J.
Albertsson
, “
A reinvestigation of β-gallium oxide
,”
Acta Crystallogr., Sect. C
52
,
1336
(
1996
).
37.
R. D.
Shannon
, “
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
,”
Acta Crystallogr., Sect. A
32
,
751
(
1976
).
38.
N. J.
Stone
, “
Table of nuclear magnetic dipole and electric quadrupole moments
,”
At. Data Nucl. Data Tables
90
,
75
(
2005
).
39.
J. R.
Ritter
,
K. G.
Lynn
, and
M. D.
McCluskey
, “
Iridium-related complexes in Czochralski-grown β-Ga2O3
,”
J. Appl. Phys.
126
,
225705
(
2019
).
40.
S.
Stoll
and
D.
Goldfarb
, “
EPR interactions—Nuclear quadrupole couplings
,” in
EPR Spectroscopy: Fundamentals and Methods
, edited by
D.
Goldfarb
and
S.
Stoll
(
John Wiley & Sons
,
Chichester
,
2018
), Chap. 6.
41.
A. T.
Brant
,
S.
Yang
,
N. C.
Giles
,
M.
Zafar Iqbal
,
A.
Manivannan
, and
L. E.
Halliburton
, “
Oxygen vacancies adjacent to Cu2+ ions in TiO2 (rutile) crystals
,”
J. Appl. Phys.
109
,
073711
(
2011
).
42.
S.
Stoll
and
A.
Schweiger
, “
Easyspin, a comprehensive software package for spectral simulation and analysis in EPR
,”
J. Magn. Reson.
178
,
42
(
2006
).
43.
The EasySpin program is available at https://www.easyspin.org.
44.
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
, and
N. C.
Giles
, “
Gallium vacancies in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
110
,
202104
(
2017
).
45.
J. R.
Morton
and
K. F.
Preston
, “
Atomic parameters for paramagnetic resonance data
,”
J. Magn. Res. (1969)
30
,
577
(
1978
).
46.
J. A. J.
Fitzpatrick
,
F. R.
Manby
, and
C. M.
Western
, “
The interpretation of molecular magnetic hyperfine interactions
,”
J. Chem. Phys.
122
,
084312
(
2005
).
47.
B. E.
Kananen
,
N. C.
Giles
,
L. E.
Halliburton
,
G. K.
Foundos
,
K. B.
Chang
, and
K. T.
Stevens
, “
Self-trapped holes in β-Ga2O3 crystals
,”
J. Appl. Phys.
122
,
215703
(
2017
).
48.
R.
Chen
, “
Glow curves with general order kinetics
,”
J. Electrochem. Soc.
116
,
1254
(
1969
).
49.
R.
Chen
and
S. W. S.
McKeever
,
Theory of Thermoluminescence and Related Phenomena
(
World Scientific Publishing Co.
,
Singapore
,
1997
).
50.
C. A.
Lenyk
,
T. D.
Gustafson
,
L. E.
Halliburton
, and
N. C.
Giles
, “
Deep donors and acceptors in β-Ga2O3 crystals: Determination of the Fe2+/3+ level by a noncontact method
,”
J. Appl. Phys.
126
,
245701
(
2019
).
You do not currently have access to this content.