In recent years, enhanced thermal conductive properties of polymer composites filled with reduced graphene oxide (rGO) have been studied for diverse applications. However, rGO fillers tend to form aggregates, making it difficult to reach the maximum enhancement through the use of rGO. Experiments have shown that the hydrogen bond between rGO and montmorillonite (MMT) can lead to a stable dispersion of rGO with the result of improving the effective thermal conductivity (ETC) of the composite. However, the mechanisms of this phenomenon are not yet well known. In this work, a micromechanics-based method is proposed to provide an analytical expression of the ETC of rGO/MMT/polymer composites. The predictions are in good agreement with the experimental data, demonstrating the effectiveness of the proposed framework. Also, the effect of the orientation of the fillers is investigated, which useful to determine the optimal orientation and filling ratio to meet various requirements in the material performance design and preparation of rGO/MMT/polymer composites.

1.
A. A.
Balandin
,
Nat. Mater.
10
,
569
(
2011
).
2.
Y.
Li
,
Z. Y.
Feng
,
L. J.
Huang
,
K.
Essa
,
E.
Bilotti
,
H.
Zhang
,
T.
Peijs
, and
L.
Hao
,
Compos. Part A Appl. Sci. Manuf.
124
,
105483
(
2019
).
3.
S.
Farhad
,
D. C.
Whalley
, and
P. P.
Conway
, in 2006 First Electronic System Integration Technology Conference (IEEE Cat. No. 06EX1494) (IEEE, 2006), p. 11.
4.
J.
Liu
,
B.
Michel
,
M.
Rencz
,
C.
Tantolin
,
C.
Sarno
,
R.
Miessners
,
K.-V.
Schuetts
,
X.
Tang
,
S.
Demoustier
, and
A.
Ziaei
, in 14th International Workshop on Thermal Investigation of ICs and Systems (IEEE, 2008), p. 156.
5.
X. F.
Han
,
D. D.
Qi
,
L.
Zhang
, and
C. Z.
Li
,
Acta Polym. Sin.
014,
218
(
2014
).
6.
S.
Zhu
,
S.
Deng
, and
S.
Xie
,
J. Xiamen Univ.
56
, 474 (
2017
).
7.
M. E. M.
Mekhzoum
,
H.
Essabir
,
D.
Rodrigue
,
A. E. K.
Qaiss
, and
R.
Bouhfid
,
Polym. Compos.
39
, 2046 (
2016
).
8.
H.
Li
,
J.
Wang
,
C.
Chu
, and
C.
Yin
,
Non-Met. Mines
38
, 15 (
2015
).
9.
V. B.
Mohan
,
K. T.
Lau
,
D.
Hui
, and
D.
Bhattacharyya
,
Compos. Part B
142
,
200
(
2018
).
10.
M. A.
Lang
,
G. J.
Wang
, and
J. F.
Dai
,
New Carbon Mater.
29
, 129 (
2016
).
11.
J.
Si
,
L.
Jian
,
S.
Wang
,
L.
Yu
, and
X.
Jing
,
Compos. Part A
54
,
166
(
2013
).
12.
P.
Kumar
,
S.
Yu
,
F.
Shahzad
,
S. M.
Hong
,
Y. H.
Kim
, and
C. M.
Koo
,
Carbon
101
,
120
(
2016
).
13.
P.
Kumar
,
M. K.
Yadav
,
N.
Panwar
,
A.
Kumar
, and
R.
Singhal
,
Mater. Res. Express
6
,
115604
(
2019
).
14.
P.
Kumar
,
F.
Shahzad
,
S.
Yu
,
S. M.
Hong
,
Y.-H.
Kim
, and
C. M.
Koo
,
Carbon
94
,
494
(
2015
).
15.
X. Q.
Ji
,
Y. H.
Xu
,
W. L.
Zhang
,
L.
Cui
, and
J. Q.
Liu
,
Compos. Part A
87
,
29
(
2016
).
16.
X.
Zhao
,
Q.
Zhang
,
D.
Chen
, and
P.
Lu
,
Macromolecules
43
,
2357
(
2010
).
17.
X.
Wang
,
W.
Xing
,
P.
Zhang
,
L.
Song
,
H.
Yang
, and
Y.
Hu
,
Compos. Sci. Technol.
72
,
737
(
2012
).
18.
I.
Zaman
,
T. T.
Phan
,
H. C.
Kuan
,
Q.
Meng
,
L. T. B.
La
,
L.
Luong
,
O.
Youssf
, and
J.
Ma
,
Polymer
52
,
1603
(
2011
).
19.
Z.
Tang
,
Y.
Lei
,
B.
Guo
,
L.
Zhang
, and
D.
Jia
,
Polymer
53
,
673
(
2012
).
20.
C.
Zhang
,
W. T.
Weng
,
W.
Fan
,
Z.
Yang
,
S.
Huang
, and
T.
Liu
,
J. Mater. Chem.
21
,
18011
(
2011
).
21.
X. F.
Han
,
D. D.
Qi
,
L.
Zhang
, and
C. Z.
Li
,
Acta Polym. Sin.
014
,
218
(
2014
).
22.
A.
Dabrowska
,
S.
Bellucci
,
A.
Cataldo
,
F.
Micciulla
, and
A.
Huczko
,
Phys. Status Solidi B
251
,
2599
(
2014
).
23.
L.
Pierantoni
,
D.
Mencarelli
,
M.
Bozzi
,
R.
Moro
,
S.
Moscato
,
L.
Perregrini
,
F.
Micciulla
,
A.
Cataldo
, and
S.
Bellucci
,
IEEE Trans. Microw. Theory Tech.
63
,
2491
(
2015
).
24.
A.
Maffucci
,
F.
Micciulla
,
A.
Cataldo
,
G.
Miano
, and
S.
Bellucci
,
Nanotechnology
27
,
095204
(
2016
).
25.
A.
Cataldo
,
G.
Biagetti
,
D.
Mencarelli
,
F.
Micciulla
,
P.
Crippa
,
C.
Turchetti
,
L.
Pierantoni
, and
S.
Bellucci
,
Nanomaterials
10
,
27
(
2020
).
26.
V.
Levin
,
E.
Morokov
,
Y.
Petronyuk
,
A.
Cataldo
, and
S.
Bistarelli
,
Polym. Eng. Sci.
57
,
697
(
2017
).
27.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Oxford University Press
,
2014
).
28.
D. A.
de Vries
,
Mededelingen Van de Landbouwhogeschool Te Wageningen
52
,
1
(
1952
).
29.
V. R.
Tarnawski
,
P.
Coppa
,
W. H.
Leong
,
M.
McCombie
, and
G.
Bovesecchi
,
Int. J. Therm. Sci.
156
,
106493
(
2020
).
30.
V. R.
Tarnawski
,
F.
Tsuchiya
,
P.
Coppa
, and
G.
Bovesecchi
,
Int. J. Thermophys.
40
,
14
(
2019
).
31.
V. R.
Tarnawski
,
M. L.
McCombie
,
W. H.
Leong
,
P.
Coppa
,
S.
Corasaniti
, and
G.
Bovesecchi
,
Int. J. Thermophys.
39
,
35
(
2018
).
32.
M. L.
McCombie
,
V. R.
Tarnawski
,
G.
Bovesecchi
,
P.
Coppa
, and
W. H.
Leong
,
Int. J. Thermophys.
38
,
21
(
2016
).
33.
T.
Mori
and
K.
Tanaka
,
Acta Metall.
21
,
571
(
1973
).
34.
P. P.
Castañeda
and
J. R.
Willis
,
J. Mech. Phys. Solids
43
,
1919
(
1995
).
35.
D. A. G.
Bruggeman
,
Ann. Phys.
24
,
636
(
1935
).
36.
H.
Hatta
and
M.
Taya
,
J. Appl. Phys.
58
,
2478
(
1985
).
37.
H. L.
Duan
,
B. L.
Karihaloo
,
J.
Wang
, and
X.
Yi
,
Phys. Rev. B
7360
,
4203
(
2006
).
38.
S. H.
Xie
,
Y. Y.
Liu
, and
J. Y.
Li
,
Appl. Phys. Lett.
92
,
197
(
2008
).
39.
K.
Markov
and
L.
Preziosi
,
Meccanica
36
,
239
(
2001
).
40.
T.
Mura
,
Micromechanics of Defects in Solids
(
Kluwer Academic Publishers
,
1987
).
41.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D. E.
Jiang
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
42.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nat. Mater.
9
,
555
(
2010
).
43.
F.
Hao
,
D.
Fang
, and
Z.
Xu
,
Appl. Phys. Lett.
99
,
041901
(
2011
).
44.
Y.
Wang
,
G. J.
Weng
,
S. A.
Meguid
, and
A. M.
Hamouda
,
J. Appl. Phys.
115
,
54
(
2014
).
45.
K.
Markov
,
L.
Preziosi
, and
G.
Gaunaurd
,
Appl. Mech. Rev.
55
,
B50
(
2002
).
46.
Z.
Zhang
, D.Sc. thesis, Peking University, 2017.
You do not currently have access to this content.