Ion-induced secondary electron emission (SEE) is a fundamental surface interaction that strongly influences many plasma discharges. Recently, interest in iodine plasmas is growing due to new material processing and space propulsion applications, but data for SEE yields due to iodine ion bombardment remain scarce. Additionally, due to the formation of multiple ion species in typical iodine plasmas and surface chemical reactions leading to iodide layer formation, the effective SEE yield is expected to differ from that for individual ion species on clean surfaces. In this work, we measure the SEE yield of multi-species iodine ion beams bombarding different target materials (Mo, W, Al, Ti, Cu, carbon-carbon, and steel) in the energy range of 0.6–1.4 keV. An ion beam is produced by extracting and accelerating ions from a gridded ion source based on an inductively coupled plasma (ICP). SEE yields of downstream targets are measured using a conventional electrostatic probe technique, and the ion beam composition is determined using time-of-flight spectrometry. The beam is composed predominately of atomic (I+) and molecular (I2+) ions whose ratio changes depending on the ICP power. Yields depend strongly on the target material and beam composition and vary between 0.05 and 0.4 depending on whether potential or kinetic emission processes dominate.

1.
K.
Holste
,
W.
Gärtner
,
D.
Zschätzsch
,
S.
Scharmann
,
P.
Köhler
,
P.
Dietz
, and
P. J.
Klar
, “
Performance of an iodine-fueled radio-frequency ion-thruster
,”
Eur. Phys. J. D
72
,
9
(
2018
).
2.
J.
Martinez Martinez
,
D.
Rafalskyi
, and
A.
Aanesland
, “Development and testing of the NPT30-I2 iodine ion thruster,” in 36th International Electric Propulsion Conference (ERPS, 2019).
3.
J.
Szabo
,
B.
Pote
,
S.
Paintal
,
M.
Robin
,
A.
Hillier
,
R. D.
Branam
,
R. E.
Huffmann
, “
Performance evaluation of an iodine-vapor hall thruster
,”
J. Propul. Power
28
,
848
857
(
2012
).
4.
H.
Kamhawi
,
T.
Haag
,
G.
Benavides
,
T.
Hickman
,
T.
Smith
,
G.
Williams
,
J. L.
Myers
,
K. A.
Polzin
,
J.
Dankanich
, and
L.
Byrne
et al., “Overview of iodine propellant hall thruster development activities at NASA Glenn Research Center,” in 52nd AIAA/SAE/ASEE Joint Propulsion Conference (AIAA, 2016), p. 4729.
5.
A.
Sasoh
and
Y.
Arakawa
, “
Electromagnetic effects in an applied-field magnetoplasmadynamic thruster
,”
J. Propul. Power
8
,
98
102
(
1992
).
6.
K.
Takahashi
, “
Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles
,”
Rev. Modern Plasma Phys.
3
,
3
(
2019
).
7.
P.
Dietz
,
W.
Gärtner
,
Q.
Koch
,
P. E.
Köhler
,
Y.
Teng
,
P. R.
Schreiner
,
K.
Holste
, and
P. J.
Klar
, “
Molecular propellants for ion thrusters
,”
Plasma Sources Sci. Technol.
28
,
084001
(
2019
).
8.
P.
Grondein
,
T.
Lafleur
,
P.
Chabert
, and
A.
Aanesland
, “
Global model of an iodine gridded plasma thruster
,”
Phys. Plasmas
23
,
033514
(
2016
).
9.
R.
Lucken
,
F.
Marmuse
,
A.
Tavant
,
A.
Bourdon
, and
P.
Chabert
, “Global model of a magnetized ion thruster with xenon and iodine,” in 36th International Electric Propulsion Conference, IEPC-2019-678 (ERPS, 2019).
10.
T.
Lafleur
,
P.
Chabert
, and
J. P.
Booth
, “
Secondary electron induced asymmetry in capacitively coupled plasmas
,”
J. Phys. D: Appl. Phys.
46
,
135201
(
2013
).
11.
Y.-Y.
Wen
,
Y.-R.
Zhang
,
G.
Jiang
,
Y.-H.
Song
, and
Y.-N.
Wang
, “
Secondary electron effect on sustaining capacitively coupled discharges: A hybrid modeling investigation of the ionization rate
,”
AIP Adv.
9
,
055019
(
2019
).
12.
M.
Radmilović-Radjenović
and
B.
Radjenović
, “
A particle-in-cell simulation of the breakdown mechanism in microdischarges with an improved secondary emission model
,”
Contrib. Plasma Phys.
47
,
165
172
(
2007
).
13.
Z.
Donkó
, “
Apparent secondary-electron emission coefficient and the voltage-current characteristics of argon glow discharges
,”
Phys. Rev. E
64
,
026401
(
2001
).
14.
I. D.
Kaganovich
,
Y.
Raitses
,
D.
Sydorenko
, and
A.
Smolyakov
, “
Kinetic effects in a hall thruster discharge
,”
Phys. Plasmas
14
,
057104
(
2007
).
15.
L.
Habl
,
D.
Rafalskyi
, and
T.
Lafleur
, “
Ion beam diagnostic for the assessment of miniaturized electric propulsion systems
,”
Rev. Sci. Instrum.
91
,
093501
(
2020
).
16.
Y.
Yamauchi
and
R.
Shimizu
, “
Secondary electron emission from aluminum by argon and oxygen ion bombardment below 3 keV
,”
Jpn. J. Appl. Phys.
22
,
L227
L229
(
1983
).
17.
M. A.
Lewis
,
D. A.
Glocker
, and
J.
Jorne
, “
Measurements of secondary electron emission in reactive sputtering of aluminum and titanium nitride
,”
J. Vac. Sci. Technol. A
7
,
1019
1024
(
1989
).
18.
D.
Depla
,
X. Y.
Li
,
S.
Mahieu
, and
R.
De Gryse
, “
Determination of the effective electron emission yields of compound materials
,”
J. Phys. D: Appl. Phys.
41
,
202003
(
2008
).
19.
A.
Marcak
,
C.
Corbella
,
T.
de los Arcos
, and
A.
von Keudell
, “
Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor
,”
Rev. Sci. Instrum.
86
,
106102
(
2015
).
20.
C.
Corbella
,
A.
Marcak
,
T.
de los Arcos
, and
A.
von Keudell
, “
Revising secondary electron yields of ion-sputtered metal oxides
,”
J. Phys. D: Appl. Phys.
49
,
16LT01
(
2016
).
21.
D.
Flanders
,
L.
Pressman
, and
G.
Pinelli
, “
Reactive ion etching of indium compounds using iodine containing plasmas
,”
J. Vac. Sci. Technol. B
8
,
1990
1993
(
1990
).
22.
A.
Wright
, “
Artefacts in iodine ion milling of some compound semiconductors
,”
Ultramicroscopy
83
,
1
8
(
2000
).
23.
J.
Szabo
and
M.
Robin
, “
Plasma species measurements in the plume of an iodine fueled hall thruster
,”
J. Propul. Power
30
,
1357
1367
(
2014
).
24.
Z. R.
Taillefer
,
J. J.
Blandino
, and
J.
Szabo
, “
Characterization of a barium oxide cathode operating on xenon and iodine propellants
,”
J. Propul. Power
36
,
575
585
(
2020
).
25.
K. A.
Polzin
,
S. R.
Peeples
,
J. F.
Seixal
,
S. L.
Mauro
,
B. L.
Lewis
,
G. A.
Jerman
,
D. H.
Calvert
,
J.
Dankanich
,
H.
Kamhawi
,
T. A.
Hickman
,
J.
Szabok
,
B.
Pote
, and
L.
Lee
, “Propulsion system development for the iodine satellite (iSAT) demonstration mission,” in 34th International Electric Propulsion Conference (ERPS, 2017).
26.
A. V.
Phelps
, “Phelps database,” see http://jilawww.colorado.edu/avp/ (2020).
27.
J.
Martinez Martinez
and
D.
Rafalskyi
, “Development of iodine propellant and flow control units suitable for multiple propulsion systems,” in Space Propulsion Conference (Association Aéronautique et Astronautique de France, 2020).
28.
V.
Gushenets
,
A.
Nikolaev
,
E.
Oks
,
L.
Vintizenko
,
G. Y.
Yushkov
,
A.
Oztarhan
, and
I.
Brown
, “
Simple and inexpensive time-of-flight charge-to-mass analyzer for ion beam source characterization
,”
Rev. Sci. Instrum.
77
,
063301
(
2006
).
29.
H. D.
Hagstrum
, “
Auger ejection of electrons from molybdenum by noble gas ions
,”
Phys. Rev.
104
,
672
683
(
1956
).
30.
G. D.
Magnuson
and
C. E.
Carlston
, “
Electron ejection from metals due to 1- to 10-keV noble gas ion bombardment. I. Polycrystalline materials
,”
Phys. Rev.
129
,
2403
2408
(
1963
).
31.
J.
Ferron
,
E. V.
Alonso
,
R. A.
Baragiola
, and
A.
Oliva-Florio
, “
Electron emission from molybdenum under ion bombardment
,”
J. Phys. D: Appl. Phys.
14
,
1707
1720
(
1981
).
32.
R. A.
Baragiola
and
P.
Riccardi
, “Electron emission from surfaces induced by slow ions and atoms,” in Reactive Sputter Deposition, edited by R. Hull, R. M. Osgood, J. Parisi, H. Warlimont, D. Depla, and S. Mahieu (Springer, Berlin, 2008), Vol. 109, pp. 43–60.
33.
P.
Mahadevan
,
G. D.
Magnuson
,
J. K.
Layton
, and
C. E.
Carlston
, “
Secondary-electron emission from molybdenum due to positive and negative ions of atmospheric gases
,”
Phys. Rev.
140
,
A1407
A1412
(
1965
).
You do not currently have access to this content.