ErF3-doped TeO2–Ga2O3–BaF2–AlF3–Y2O3 (TGBAY) glasses with high fluorescence efficiency and a high thermal damage threshold were developed for potential mid-infrared fiber laser applications. A model 2.7-μm fiber laser based on this material was analyzed using rate and propagation equations. Under 808 and 980 nm laser pumping, fluorescence emissions with central wavelength at 1.55 and 2.73 μm were detected. Based on the Judd–Ofelt (J–O) theory, the intensity parameters (Ωλ, λ = 2, 4, and 6) and radiative transition property were calculated and characterized through absorption and emission spectra. The results indicated that tellurite–gallium oxyfluoride glass had a high glass transition temperature (Tg, ∼391 °C), large emission cross sections at 1.55 μm (6.32 × 10−21 cm2) and 2.73 μm (9.68 × 10−21 cm2) as well as a longer fluorescence lifetime (6.84 ms at 1.55 μm and 262 μs at 2.73 μm) relative to the conventional Er3+-doped tellurite glass. The temperature dependence of the emission spectra indicated that TGBAY-2Er glass was more favorable to achieve infrared emission at low temperatures. Numerical simulation revealed the feasibility of achieving a ∼2.7 μm fiber laser operation based on the developed Er3+-doped tellurite–gallium oxyfluoride glass fiber.

1.
G. R.
Nash
,
J. L.
Stokes
,
J. R.
Pugh
,
S. J. B.
Przeslak
,
P. J.
Heard
,
J. G.
Rarity
, and
M. J.
Cryan
, “
Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity
,”
Appl. Phys. Lett.
100
,
011103
(
2012
).
2.
M. C.
Brierley
and
P. W.
France
, “
Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fiber
,”
Electron. Lett.
24
,
935
937
(
1988
).
3.
D.
Faucher
,
M.
Bernier
,
G.
Androz
,
N.
Caron
, and
R.
Vallee
, “
20 W passively cooled single-mode all-fiber laser at 2.8 mm
,”
Opt. Lett.
36
,
1104
1106
(
2011
).
4.
V.
Fortin
,
M.
Bernier
,
S. T.
Bah
, and
R.
Vallee
, “
30 W fluoride glass all-fiber laser at 294 μm
,”
Opt. Lett.
40
,
2882
2885
(
2015
).
5.
P. F.
Wang
,
J. F.
Bei
,
N.
Ahmed
,
A. K. L.
Ng
, and
H.
Ebendorff-Heidepriem
, “
Development of low-loss lead-germanate glass for mid-infrared fiber optics: I. Glass preparation optimization
,”
J. Am. Ceram. Soc.
104
,
860
876
(
2021
).
6.
J. E.
Stanworth
,
Tellurite Glasses
(
Springer
,
New York
,
1952
), pp.
581
582
.
7.
J. S.
Wang
,
E. M.
Vogel
, and
E.
Snitzer
, “
Tellurite glass: A new candidate for fiber devices
,”
Opt. Mater.
3
,
187
203
(
1994
).
8.
S. X.
Shen
,
A.
Jha
,
X. B.
Liu
,
M.
Naftaly
,
K.
Bindra
,
H. J.
Bookey
, and
A. K.
Kar
, “
Tellurite glasses for broadband amplifiers and integrated optics
,”
J. Am. Ceram. Soc.
85
,
1391
1395
(
2002
).
9.
A.
Jha
,
B. D. O.
Richards
,
G.
Jose
,
T.
Toney Fernandez
,
C. J.
Hill
,
J.
Lousteau
, and
P.
Joshi
, “
Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications
,”
Int. Mater. Rev.
57
,
357
382
(
2012
).
10.
A.
Mori
,
Y.
Ohishi
, and
S.
Sudo
, “
Erbium-doped tellurite glass fibre laser and amplifier
,”
Electron. Lett.
33
,
863
864
(
1997
).
11.
H.
Zhan
,
A.
Zhang
,
J. L.
He
,
Z. G.
Zhou
,
L.
Li
,
T. F.
Shi
,
X. S.
Xiao
,
J. H.
Si
, and
A. X.
Lin
, “
Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses
,”
J. Alloys Compd.
582
,
742
746
(
2014
).
12.
X.
Feng
,
S.
Tanabe
, and
T.
Hanada
, “
Spectroscopic properties and thermal stability of Er3+-doped germanotellurite classes for broadband fiber amplifiers
,”
J. Am. Ceram. Soc.
84
,
165
171
(
2001
).
13.
L.
Gomes
,
M.
Oermann
,
H.
Ebendorff-Heidepriem
,
D.
Ottaway
,
T.
Monro
, and
S. D.
Jackon
, “
Energy level decay and excited state absorption processes in erbium-doped tellurite glass
,”
J. Appl. Phys.
110
,
083111
(
2011
).
14.
Y.
Tian
,
B. P.
Li
,
J. R.
Wang
,
Q. H.
Liu
,
Y. L.
Chen
,
J. J.
Zhang
, and
S. Q.
Xu
, “
The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes
,”
J. Lumin.
214
,
116586
(
2019
).
15.
F. J.
Yang
,
B.
Huang
,
L. B.
Wu
,
Y. X.
Zhou
,
F.
Chen
,
G. B.
Yang
, and
J.
Li
, “
Enhanced 1.53 μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide
,”
Opt. Mater.
47
,
149
156
(
2015
).
16.
V.
Nazabal
,
S.
Todoroki
,
A.
Nukui
,
T.
Matsumoto
,
S.
Suehara
,
T.
Hondo
,
T.
Araki
,
S.
Inoue
,
C.
Rivero
, and
T.
Cardinal
, “
Oxyfluoride tellurite glasses doped by erbium: Thermal analysis, structural organization and spectral properties
,”
J. Non-Cryst. Solids.
325
,
85
102
(
2003
).
17.
H.
Lei
,
L. W.
Zeng
,
F. L.
Lin
,
Z. T.
Qin
,
G. N.
Li
, and
J. F.
Tang
, “
Yb3+/Er3+ incorporated fluorotellurite glasses with varying TeO2 content for optical temperature sensing based on upconverted FIR technique
,”
J. Lumin.
229
,
117677
(
2021
).
18.
F.
Zhang
,
Z. F.
Bi
,
J. Y.
Chen
,
A.
Huang
,
Y. C.
Zhu
,
B. J.
Chen
, and
Z. S.
Xiao
, “
Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence
,”
J. Alloys Compd.
649
,
1191
1196
(
2015
).
19.
M.
Dutreilh-Colas
,
P.
Charton
,
P.
Thomas
,
P.
Armand
,
P.
Marchet
, and
J. C.
Champarnaud-Mesjard
, “
The TeO2-rich part of the TeO2–Ga2O3 system: Equilibrium and non-equilibrium phase diagram
,”
J. Mater. Chem.
12
,
2803
2806
(
2002
).
20.
L. Y.
Mao
,
J. L.
Liu
,
L. X.
Li
, and
W. C.
Wang
, “
TeO2–Ga2O3–ZnO ternary tellurite glass doped with Tm3+ and Ho3+ for 2 μm fiber lasers
,”
J. Non-Cryst. Solids.
531
,
119855
(
2020
).
21.
A.
Marczewska
,
M.
Środa
, and
M.
Nocuń
, “
Thermal and spectroscopic characterization of gallium–tellurite glasses doped BaF2 and PbO
,”
J. Non-Cryst. Solids.
464
,
104
114
(
2017
).
22.
A.
Marczewska
and
M.
Środa
, “
Spectroscopic and thermal study of a new glass from TeO2–Ga2O3–GeO2 system
,”
J. Mol. Struct.
1164
,
100
108
(
2018
).
23.
W.
Zhang
,
X.
Liu
,
X.
Fan
,
L.
Hu
, and
L.
Zhang
, “
Mid-IR emission potentiality of a new stable gallioaluminate glass system
,”
Opt. Mater.
37
,
793
797
(
2014
).
24.
M.
Środa
,
S.
Świontek
, and
D.
Fraś
, “
Effect of Ga2O3 on the structure and properties of TeO2–GeO2 glass doped with Pr3+
,”
J. Non-Cryst. Solids.
526
,
119699
(
2019
).
25.
Y.
Tian
,
R.
Xu
,
L.
Hu
, and
J.
Zhang
, “
Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials
,”
Opt. Mater.
34
,
308
312
(
2011
).
26.
G. N.
Hou
,
C. M.
Zhang
,
W. B.
Fu
,
G. S.
Li
,
J.
Xia
, and
Y.
Ping
, “
Broadband mid-infrared 2.0 μm and 4.1 μm emission in Ho3+/Yb3+ co-coped tellurite-germanate glasses
,”
J. Lumin.
217
,
116769
(
2020
).
27.
I.
Jlassi
,
H.
Elhouichet
,
S.
Hraiech
, and
M.
Ferid
, “
Effect of heat treatment on the structural and optical properties of tellurite glasses doped erbium
,”
J. Lumin.
132
,
832
840
(
2012
).
28.
R.
Wang
,
X.
Meng
,
F.
Yin
,
Y.
Feng
,
G.
Qin
, and
W.
Qin
, “
Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser application
,”
Opt. Mater. Express.
3
,
1127
1136
(
2013
).
29.
F.
Huang
,
Y.
Ma
,
W.
Li
,
X.
Liu
,
L.
Hu
, and
D.
Chen
, “
2.7 μm emission of high thermally and chemically durable glasses based on AlF3
,”
Sci. Rep.
4
,
3607
(
2014
).
30.
J.
Cui
,
X.
Xiao
,
Y.
Xu
,
X.
Cui
,
M.
Chen
,
J.
Guo
,
M.
Lu
,
B.
Peng
, and
H.
Guo
, “
Mid-infrared emissions of Dy3+ doped Ga–As–S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser
,”
Opt. Mater.
8
,
2089
2102
(
2018
).
31.
B. R.
Judd
, “
Optical absorption intensities of rare-earth ions
,”
Phys. Rev.
127
,
750
761
(
1962
).
32.
G. S.
Ofelt
, “
Intensities of crystal spectra of rare earth ions
,”
J. Chem. Phys.
37
,
511
520
(
2005
).
33.
C. K.
Jorgensen
and
R.
Reisfeld
, “
Judd–Ofelt parameters and chemical bonding
,”
J. Less-Common Met.
93
,
107
112
(
2003
).
34.
W. T.
Carnall
,
P. R.
Fields
, and
K.
Rajnak
, “
Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+
,”
J. Chem. Phys.
49
,
4424
4442
(
2004
).
35.
S.
Tanabe
,
T.
Ohyagi
,
S.
Todoroki
,
T.
Hanada
, and
N.
Soga
, “
Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses
,”
J. Appl. Phys.
73
,
8451
8454
(
1993
).
36.
D. K.
Sardar
,
C. C.
Russel
 III
, and
R. M.
Yow
, “
Spectroscopic analysis of the Er3+ (4f11) absorption intensities in NaBi(WO4)2
,”
J. Appl. Phys.
95
,
1180
(
2004
).
37.
F. F.
Zhang
,
W. J.
Zhang
,
J.
Yuan
,
D. D.
Chen
,
Q.
Qian
, and
Q. Y.
Zhang
, “
Enhanced 2.7 μm emission from Er3+doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser
,”
AIP Adv.
4
,
047101
(
2014
).
38.
Y.
Luo
,
J.
Zhang
,
J.
Sun
,
J. T.
Sun
,
S. Z.
Lu
, and
X. J.
Wang
, “
Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations
,”
Opt. Mater.
28
,
255
258
(
2006
).
39.
S. X.
Dai
,
J.
Zhang
,
C.
Yu
,
G.
Zhou
,
G. N.
Wang
, and
L.
Hu
, “
Effect of hydroxyl groups on nonradiative decay of Er3+: 4I13/2 → 4I15/2 transition in zinc tellurite glasses
,”
Mater. Lett.
59
,
2333
2336
(
2005
).
40.
H.
Lin
,
K.
Liu
,
E. Y. B.
Pun
,
T. C.
Ma
,
X.
Peng
,
O. D.
An
,
J. Y.
Yu
, and
S. B.
Jiang
, “
Infrared and visible fluorescence in Er3+-doped gallium tellurite glasses
,”
Chem. Phys. Lett.
398
,
146
150
(
2004
).
41.
M.
Jayasimhadri
,
Z. G.
Ivanova
,
M.
Kincl
, and
K.
Jang
, “
Spectroscopic properties of Er3+ ions in (GeS2)(80)(Ga2S3)(20) glasses
,”
Mater. Chem. Phys.
120
,
2
3
(
2009
).
42.
S.
Tanabe
, “
Optical transitions of rare earth ions for amplifiers: How the local structure works in glass
,”
J. Non-Cryst. Solids.
259
,
1
9
(
1999
).
43.
F.
Huang
,
X. Q.
Liu
,
L.
Hu
, and
D. P.
Chen
, “
Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses
,”
Sci. Rep.
4
,
5053
(
2014
).
44.
P.
Babu
,
H. J.
Seo
,
C. R.
Kesavulu
,
H. K.
Jang
, and
C. K.
Jayasankar
, “
Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses
,”
J. Lumin.
129
,
444
448
(
2009
).
45.
F.
Huang
,
Y.
Guo
,
Y.
Ma
,
L.
Zhang
, and
J.
Zhang
, “
Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials
,”
Appl. Opt.
52
,
1399
(
2013
).
46.
H.
Lin
,
D.
Chen
,
Y.
Yu
,
A.
Yang
, and
Y.
Wang
, “
Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass
,”
Opt. Lett.
36
,
1815
(
2011
).
47.
W. C.
Wang
,
J.
Yuan
,
L. X.
Li
,
D. D.
Chen
,
Q.
Qian
, and
Q. Y.
Zhang
, “
Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications
,”
Opt. Mater. Express.
5
,
2964
(
2015
).
48.
S. M.
Li
,
L. H.
Zhang
,
M. Z.
He
,
G. Z.
Chen
,
P. X.
Zhang
,
Y. L.
Yang
,
M.
Xu
,
T.
Yan
,
N.
Ye
, and
Y.
Hang
, “
Effective enhancement of 2.87 μm fluorescence via Yb3+ in Ho3+:LaF3 laser crystal
,”
J. Lumin.
203
,
730
734
(
2018
).
49.
X.
Feng
,
T.
Hanada
, and
S.
Tanabe
, “
Hydroxyl groups in erbium-doped germanotellurite glasses
,”
J. Non-Cryst. Solids.
281
,
48
54
(
2001
).
50.
M. Z.
Cai
,
B. E.
Zhou
,
Y.
Tian
,
J. J.
Zhou
,
S. Q.
Xu
, and
J. J.
Zhang
, “
Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses
,”
J. Lumin.
171
,
143
148
(
2016
).
51.
A.
Lin
,
A.
Ryasnyanskiy
, and
J.
Toulouse
, “
Fabrication and characterization of a water-free mid-infrared fluorotellurite glass
,”
Opt. Lett.
36
,
740
742
(
2011
).
52.
G. A.
Kumar
,
A.
Martinez
, and
E. D. L.
Rosa
, “
Stimulated emission and radiative properties of Nd3+ ions in barium fluorophosphate glass containing sulphate
,”
J. Lumin.
99
,
141
148
(
2002
).
53.
C.
Koughia
,
C.
Craig
,
D. W.
Hewak
, and
S.
Kasap
, “
Further studies of radiation trapping in Er3+ doped chalcogenide glasses
,”
Opt. Mater.
87
,
157
163
(
2019
).
54.
J. L.
Liu
,
Y. B.
Xiao
,
S. J.
Huang
,
L. Y.
Mao
,
W. C.
Wang
, and
Q. Y.
Zhang
, “
The glass-forming region and 2.7 μm emission of Er3+-doped TeO2-Ta2O5-ZnO tellurite glass
,”
J. Non-Cryst. Solids.
522
,
119564
(
2019
).
55.
Y.
Tian
,
B.
Li
,
R.
Chen
,
J.
Xia
,
X.
Jing
,
J.
Zhang
, and
S.
Xu
, “
Thermal stability and 2.7 μm spectroscopic properties in Er3+ doped tellurite glasses
,”
Solid State Sci.
60
,
17
22
(
2016
).
56.
T.
Xue
,
Y.
Li
,
Y.
Liu
,
Y. Y.
Lin
,
Z. J.
Liu
,
S. X.
Dai
,
M. S.
Liao
, and
L.
Hu
, “
High thermal stability and intense 2.71 μm emission in Er3+ -doped fluorotellurite glass modified by GaF3
,”
Opt. Mater.
75
,
367
372
(
2018
).
57.
L.
Gomes
,
M.
Oermann
,
H.
Ebendorff-Heidepriem
,
D.
Ottaway
,
T.
Monro
,
A.
Felipe Henriques Librantz
, and
S. D.
Jackson
, “
Energy level decay and excited state absorption processes in erbium-doped tellurite glass
,”
J. Appl. Phys.
110
,
083111
(
2011
).
58.
F. F.
Huang
,
Y. Y.
Guo
,
Y.
Tian
,
S. Q.
Xu
, and
J. J.
Zhang
, “
Intense 2.7 μm emission in Er3+ doped zinc fluoride glass
,”
Spectrochim. Acta A
179
,
42
45
(
2017
).
59.
Y. B.
Shin
and
J.
Heo
, “
Mid-infrared emissions and multiphonon relaxation in Dy3+-doped chalcohalide glasses
,”
J. Non-Cryst. Solids.
253
,
23
29
(
1999
).
60.
E.
Brown
,
C. B.
Hanley
,
U.
Hommerich
,
A. G.
Bluiett
, and
S. B.
Trivedi
, “
Spectroscopic study of neodymium doped potassium lead bromide for mid-infrared solid state lasers
,”
J. Lumin.
133
,
244
248
(
2013
).
61.
S. A.
Payne
,
L. L.
Chase
,
L. K.
Smith
,
W. L.
Kway
, and
W. F.
Krupke
, “
Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+
,”
IEEE J. Quantum Electron.
28
,
2619
2630
(
1992
).
62.
J. L.
Doualan
,
S.
Girard
,
H.
Haquin
,
J. L.
Adam
, and
J.
Montagne
, “
Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm
,”
Opt. Mater.
24
,
563
574
(
2004
).
63.
V.
Dimitrov
and
S.
Sakka
, “
Linear and nonlinear optical properties of simple oxides
,”
J. Appl. Phys.
79
,
1741
1745
(
2002
).
64.
J.
Li
and
S. D.
Jackson
, “
Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers
,”
IEEE J. Quantum Electron.
48
,
454
464
(
2012
).
65.
M.
Pollnau
and
S. D.
Jackson
, “
Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers
,”
IEEE J. Quantum Electron.
38
,
162
169
(
2002
).
66.
Y.
Hu
,
S.
Jiang
,
G.
Sorbello
,
T.
Luo
,
Y.
Ding
,
B. C.
Hwang
,
J. H.
Kim
,
H. J.
Seo
, and
N.
Peyghambarian
, “
Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass
,”
J. Opt. Soc. Am. B.
18
,
1928
1934
(
2001
).
You do not currently have access to this content.