A new series of three spin crossover (SCO) Fe(II) complexes based on a cyanocarbanion and on the neutral quinolin-8-amine (aqin) ligands, [Fe(aqin)2(tcnsme)2] (1), [Fe(aqin)2(tcnset)2] (2), and [Fe(aqin)2(tcnspr)2] (3), has been studied. The three complexes display similar molecular structures consisting of discrete [Fe(aqin)2(tcnsR)2] complexes [R = Me (1), Et (2), and Pr (3)]. Infrared spectroscopy and magnetic studies, performed on the three complexes, revealed the presence of similar SCO behaviors which strongly differ by their transition temperatures [234 K (1) < 266 K (2) < 360 K (3)]. The increase of the transition temperatures when passing from 1 to 3 may be explained by electronic and packing effects. Thus, when passing from Me (1) to Et (2) and Pr (3), the electron donor effect increases, resulting in an increase of the ligand field and, accordingly, in an increase of the transition temperature. On the other side, examination of the different coordination modes of the cyanocarbanions in the three complexes clearly reveals the crucial role of these coordination modes on the crystal packing and, therefore, on the transition temperature. We can, therefore, attribute the important increase of the transition temperature from complexes 1 to 3 to both effects: the electron donor character of the alkyl groups and the packing effects of the versatile cycnocarbanion ligands.

1.
K. S.
Murray
and
C. J.
Kepert
, “
Cooperativity in spin crossover systems: Memory, magnetism and microporosity
,”
Top. Curr. Chem.
233
,
195
228
(
2004
).
2.
J.-F.
Létard
,
P.
Guionneau
, and
L.
Goux-Capes
, “
Towards spin crossover applications
,”
Top. Curr. Chem.
235
,
221
249
(
2004
).
3.
A.
Bousseksou
,
G.
Molnar
,
L.
Salmon
, and
W.
Nicolazzi
, “
Molecular spin crossover phenomenon: Recent achievements and prospects
,”
Chem. Soc. Rev.
40
,
3313
3335
(
2011
).
4.
T.
Rueckes
,
K.
Kim
,
E.
Joselevich
,
G. Y.
Tseng
,
C.-L.
Cheung
, and
C. M.
Lieber
, “
Carbon nanotube-based nonvolatile random access memory for molecular computing
,”
Science
289
,
94
97
(
2000
).
5.
A.
Galet
,
A. B.
Gaspar
,
M.
Carmen Muñoz
,
G. V.
Bukin
,
G.
Levchenko
, and
J.-A.
Real
, “
Tunable bistability in a three-dimensional spin-crossover sensory- and memory-functional material
,”
Adv. Mater.
17
,
2949
2953
(
2005
).
6.
C.
Bartual-Murgui
,
A.
Akou
,
C.
Thibault
,
G.
Molnar
,
C.
Vieu
,
L.
Salmon
, and
A.
Bousseksou
, “
Spin-crossover metal–organic frameworks: Promising materials for designing gas sensors
,”
J. Mater. Chem. C
3
,
1277
1285
(
2015
).
7.
A.
Lapresta-Fernandez
,
S.
Titos-Padilla
,
J. M.
Herrera
,
A.
Salinas-Castillo
,
E.
Colacio
, and
L. F.
Capitan-Vallvey
, “
Photographing the synergy between magnetic and colour properties in spin crossover material [Fe (NH2trz)3](BF4)2: A temperature sensor perspective
,”
Chem. Commun.
49
,
288
290
(
2013
).
8.
J.
Linares
,
E.
Codjovi
, and
Y.
Garcia
, “
Pressure and temperature spin crossover sensors with optical detection
,”
Sensors
12
,
4479
4492
(
2012
).
9.
M. P.
Cuéllar
,
A.
Lapresta-Fernández
,
J. M.
Herrera
,
A.
Salinas-Castillo
,
M. d. C.
Pegalajar
,
S.
Titos-Padilla
,
E.
Colacio
, and
L. F.
Capitán-Vallvey
, “
Thermochromic sensor design based on Fe (II) spin crossover/polymers hybrid materials and artificial neural networks as a tool in modelling
,”
Sens. Actuators B
208
,
180
187
(
2015
).
10.
S.
Rodriguez-Jimenez
,
H. L. C.
Feltham
, and
S.
Brooker
, “
Non-porous iron(II)-based sensor: Crystallographic insights into a cycle of colorful guest-induced topotactic transformations
,”
Angew. Chem. Int. Ed.
55
,
15067
15071
(
2016
).
11.
B.
Benaicha
,
K.
Van Do
,
A.
Yangui
,
N.
Pittala
,
A.
Lusson
,
M.
Sy
,
G.
Bouchez
,
H.
Fourati
,
C. J.
Gómez-García
,
S.
Triki
, and
K.
Boukheddaden
, “
Interplay between spin-crossover and luminescence in a multifunctional single crystal iron (II) complex: Towards a new generation of molecular sensors
,”
Chem. Sci.
10
,
6791
6798
(
2019
).
12.
S.
Cobo
,
G.
Molnár
,
J.-A.
Real
, and
A.
Bousseksou
, “
Multilayer sequential assembly of thin films that display room-temperature spin crossover with hysteresis
,”
Angew. Chem. Int. Ed.
45
,
5786
5789
(
2006
).
13.
O.
Kahn
and
C. J.
Martinez
, “
Spin-transition polymers: From molecular materials toward memory devices
,”
Science
279
,
44
48
(
1998
).
14.
Y.
Garcia
,
P. J.
van Koningsbruggen
,
E.
Codjovi
,
R.
Lapouyade
,
O.
Kahn
, and
L.
Rabardel
, “
Non-classical FeII spin-crossover behaviour leading to an unprecedented extremely large apparent thermal hysteresis of 270 K: Application for displays
,”
J. Mater. Chem.
7
,
857
858
(
1997
).
15.
M.
Matsuda
,
H.
Isozaki
, and
H.
Tajima
, “
Reproducible on-off switching of the light emission from the electroluminescent device containing a spin crossover complex
,”
Thin Solid Films
517
,
1465
1467
(
2008
).
16.
D.
Villaman
,
C. J.
McMonagle
,
M. R.
Probert
,
O.
Peña
,
Y.
Moreno
, and
M.
Fuentealba
, “
Structural studies of a manganese(III) complex with spin-crossover and thermochromic properties
,”
CrystEngComm
22
,
3221
3233
(
2020
).
17.
G. G.
Morgan
,
K. D.
Murnaghan
,
H.
Müller-Bunz
,
V.
McKee
, and
C. J. A.
Harding
, “
Manganese(III) complex that exhibits spin crossover triggered by geometric tuning
,”
Angew. Chem. Int. Ed.
45
,
7192
7195
(
2006
).
18.
A. J.
Fitzpatrick
,
E.
Trzop
,
H.
Müller-Bunz
,
M. M.
Dîrtu
,
Y.
Garcia
,
E.
Collet
, and
G. G.
Morgan
, “
Electronic vs. structural ordering in a manganese (III) spin crossover complex
,”
Chem. Commun.
51
,
17540
17543
(
2015
).
19.
M.
Griffin
,
S.
Shakespeare
,
H. J.
Shepherd
,
C. J.
Harding
,
J.-F.
Létard
,
C.
Desplanches
,
A. E.
Goeta
,
J. A. K.
Howard
,
A. K.
Powell
,
V.
Mereacre
,
Y.
Garcia
,
A. D.
Naik
,
H.
Müller-Bunz
, and
G. G.
Morgan
, “
A symmetry-breaking spin-state transition in iron(III)
,”
Angew. Chem. Int. Ed.
50
,
896
900
(
2011
).
20.
A. J.
Fitzpatrick
,
H. M.
O’Connor
, and
G. G.
Morgan
, “
A room temperature spin crossover ionic liquid
,”
Dalton Trans.
44
,
20839
20842
(
2015
).
21.
W.
Phonsri
,
B. A. I.
Lewis
,
G. N. L.
Jameson
, and
K. S.
Murray
, “
Double spin crossovers: A new double salt strategy to improve magnetic and memory properties
,”
Chem. Commun.
55
,
14031
14034
(
2019
).
22.
W.
Phonsri
,
D. S.
Macedo
,
B. A. I.
Lewis
,
D. F.
Wain
, and
K. S.
Murray
, “
Iron(III) azadiphenolate compounds in a new family of spin crossover iron(II)–iron(III) mixed-valent complexes
,”
Magnetochemistry
5
(
37
),
1
21
(
2019
).
23.
S.
Murata
,
K.
Takahashi
,
T.
Sakurai
,
H.
Ohta
,
T.
Yamamoto
,
Y.
Einaga
,
Y.
Shiota
, and
K.
Yoshizawa
, “
The role of Coulomb interactions for spin crossover behaviors and crystal structural transformation in novel anionic Fe(III) complexes from a π-extended ONO ligand
,”
Crystals
6
(
49
),
1
16
(
2016
).
24.
K.
Takahashi
,
K.
Kawamukai
,
M.
Okai
,
T.
Mochida
,
T.
Sakurai
,
H.
Ohta
,
T.
Yamamoto
,
Y.
Einaga
,
Y.
Shiota
, and
K. A.
Yoshizawa
, “
New family of anionic FeIII spin crossover complexes featuring a weak-field N2O4 coordination octahedron
,”
Chem. Eur. J.
22
,
1253
1257
(
2016
).
25.
P.
Guionneau
,
M.
Marchivie
,
G.
Bravic
,
J.-F.
Létard
, and
D.
Chasseau
, “
Co(II) molecular complexes as a reference for the spin crossover in Fe(II) analogues
,”
J. Mater. Chem.
12
,
2546
2551
(
2002
).
26.
A. B.
Gaspar
,
M.
Carmen Muñoz
,
V.
Niel
, and
J.-A.
Real
, “
[CoII(4-terpyridone)2]X2:  A novel cobalt(II) spin crossover system [4-terpyridone = 2,6-Bis(2-pyridyl)-4(1H)-pyridone]
,”
Inorg. Chem.
40
,
9
10
(
2001
).
27.
J.
Zarembowitch
and
O.
Kahn
, “
Magnetic properties of some spin-crossover, high-spin, and low-spin cobalt(II) complexes with Schiff bases derived from 3-formylsalicylic acid
,”
Inorg. Chem.
23
,
589
593
(
1984
).
28.
F.
Fürmeyer
,
D.
Münzberg
,
L. M.
Carrella
, and
E.
Rentschler
, “
First cobalt(II) spin crossover compound with N4S2-donorset
,”
Molecules
25
,
855
(
2020
).
29.
Spin-Crossover Materials Properties and Applications
, edited by
M. A.
Halcrow
(
Wiley
,
2013
).
30.
K. S.
Kumar
and
M.
Ruben
, “
Emerging trends in spin crossover (SCO) based functional materials and devices
,”
Coord. Chem. Rev.
346
,
176
205
(
2017
).
31.
N.
Pittala
,
F.
Thétiot
,
S.
Triki
,
K.
Boukheddaden
,
G.
Chastanet
, and
M.
Marchivie
, “
Cooperative 1D triazole-based spin crossover FeII material with exceptional mechanical resilience
,”
Chem. Mater.
29
,
490
494
(
2017
).
32.
H.
Phan
,
J. J.
Hrudka
,
D.
Igimbayeva
,
L. M.
Lawson Daku
, and
M. A.
Shatruk
, “
Simple approach for predicting the spin state of homoleptic Fe(II) tris-diimine complexes
,”
J. Am. Chem. Soc.
139
,
6437
6447
(
2017
).
33.
N.
Pittala
,
F.
Thétiot
,
C.
Charles
,
S.
Triki
,
K.
Boukheddaden
,
G.
Chastanet
, and
M.
Marchivie
, “
An unprecedented trinuclear FeII triazole-based complex exhibiting a concerted and complete sharp spin transition above room temperature
,”
Chem. Commun.
53
,
8356
8359
(
2017
).
34.
E.
Milin
,
V.
Patinec
,
S.
Triki
,
E.-E.
Bendeif
,
S.
Pillet
,
M.
Marchivie
,
G.
Chastanet
, and
K.
Boukheddaden
, “
Elastic frustration triggering photoinduced hidden hysteresis and multistability in a two-dimensional photoswitchable Hofmann-like spin-crossover metal-organic framework
,”
Inorg. Chem.
55
,
11652
11661
(
2016
).
35.
M.
Shatruk
,
H.
Phan
,
B. A.
Chrisostomo
, and
A.
Suleimenova
, “
Symmetry-breaking structural phase transitions in spin crossover complexes
,”
Coord. Chem. Rev.
289–290
,
62
73
(
2015
).
36.
C.
Atmani
,
F.
El Hajj
,
S.
Benmansour
,
M.
Marchivie
,
S.
Triki
,
F.
Conan
,
V.
Patinec
,
H.
Handel
,
G.
Dupouy
, and
C. J.
Gómez-García
, “
Guidelines to design new spin crossover materials
,”
Coord. Chem. Rev.
254
,
1559
1569
(
2010
).
37.
A.
Kashiro
,
K.
Some
,
Y.
Kobayashi
, and
T.
Ishida
, “
Iron(II) and 1,1,1-tris(2-pyridyl)nonadecane complex showing an order–disorder-type structural transition and spin-crossover synchronized over both conformers
,”
Inorg. Chem.
58
,
7672
7676
(
2019
).
38.
E.
Cuza
,
S.
Benmansour
,
N.
Cosquer
,
F.
Conan
,
S.
Pillet
,
C. J.
Gómez-García
, and
S.
Triki
, “
Spin cross-over (SCO) anionic Fe(II) complexes based on the tripodal ligand tris(2-pyridyl)ethoxymethane
,”
Magnetochemistry
6
,
26
(
2020
).
39.
N.
Moliner
,
A. B.
Gaspar
,
M. C.
Muñoz
,
V.
Niel
,
J.
Cano
, and
J.-A.
Real
, “
Light- and thermal-induced spin crossover in {Fe(abpt)2[N(CN)2]2}. Synthesis, structure, magnetic properties, and high-spin ↔ low-spin relaxation studies
,”
Inorg. Chem.
40
,
3986
3991
(
2001
).
40.
L.
Capes
,
J.-F.
Létard
, and
O.
Kahn
, “
Photomagnetic properties in a series of spin crossover compounds [Fe(PM-L)2(NCX)2] (X = S, Se) with substituted 2′-pyridylmethylene-4-amino ligands
,”
Chem. Eur. J.
6
,
2246
2255
(
2000
).
41.
G. A. B.
Gaspar
,
M. C.
Carmen
,
N.
Moliner
,
V.
Ksenofontov
,
G.
Levchenko
,
P.
Gütlich
, and
J.-A.
Real
, “
Polymorphism and pressure driven thermal spin crossover phenomenon in [Fe(abpt)2(NCX)2] (X = S, and Se): Synthesis, structure and magnetic properties
,”
Monatsh. Chem.
134
,
285
294
(
2003
).
42.
V.
Ksenofontov
,
A. B.
Gaspar
,
J.-A.
Real
, and
P.
Gütlich
, “
Pressure-induced spin state conversion in antiferromagnetically coupled Fe(II) dinuclear complexes,
,”
J. Phys. Chem. B
105
,
12266
12271
(
2001
).
43.
K. P. J.
Kunkeler
,
P. J. v.
Koningsbruggen
,
J. P.
Cornelissen
,
A. N.
Van der Horst
,
A. M.
Van der Kraan
,
A. L.
Spek
,
J. G.
Haasnoot
, and
J.
Reedijk
, “
Novel hybrid spin systems of 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) radical anions and 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (abpt). Crystal structure of [Fe(abpt)2(tcnq)2] at 298 and 100 K, Mössbauer spectroscopy, magnetic properties, and infrared spectroscopy of the series [MII(abpt)2(TCNQ)2] (M = Mn, Fe, Co, Ni, Cu, Zn)
,”
J. Am. Chem. Soc.
118
,
2190
2197
(
1996
).
44.
S.
Pillet
,
C.
Lecomte
,
C. F.
Sheu
,
Y. C.
Lin
,
I. J.
Hsu
, and
Y.
Wang
, “
Light induced modulated structure of the spin crossover compound {Fe(abpt)2[N(CN)2]2}
,”
J. Phys. Conf. Ser.
21
,
221
226
(
2005
).
45.
S.
Benmansour
,
F.
Setifi
,
S.
Triki
,
J.-Y.
Salaün
,
F.
Vandevelde
,
J.
Sala-Pala
,
C. J.
Gómez-García
, and
T.
Roisnel
, “
New multidimensional coordination polymers with μ2- and μ3-dcno cyano carbanion ligand {dcno = [(NC)2CC(O)O(CH2)2OH]}
,”
Eur. J. Inorg. Chem.
2007
,
186
194
(
2007
).
46.
S.
Triki
,
F.
Thétiot
,
F.
Vandevelde
,
J.
Sala-Pala
, and
C. J.
Gómez-García
, “
New magnetic copper(II) coordination polymers with the polynitrile ligand (C[C(CN)2]3)2− and N-donor Co-ligands
,”
Inorg. Chem.
44
,
4086
4093
(
2005
).
47.
F.
Thétiot
,
S.
Triki
, and
J.
Sala-Pala
, “
Polynitriles as ligands: New coordination polymers with the 1,1,3,3-tetracyano-2-ethoxypropenide (tcnp) bridging ligand
,”
Polyhedron
22
,
1837
1843
(
2003
).
48.
F.
Thétiot
,
S.
Triki
,
J.
Sala-Pala
, and
C. J.
Gómez-García
, “
New coordination polymers with a 2,2-dicyano-1-ethoxyethenolate (dcne) bridging ligand: Syntheses, structural characterisation and magnetic properties of [M(dcne)2(H2O)2] (M = MnII, FeII, CoII, NiII and ZnII) and [Cu(dcne)2(H2O)]
,”
Dalton Trans.
2002
,
1687
1693
(
2002
).
49.
S.
Triki
,
J.
Sala-Pala
,
M.
Decoster
,
P.
Molinié
, and
L.
Toupet
, “
Novel infinite three-dimensional networks with highly conjugated polynitrile ligands syntheses, crystal structures, and magnetic properties of [Cu{C[C(CN)2]3}(H2O)2]n and [Cu{C[C(CN)2]3}(en)]n (en = NH2CH2CH2NH2)
,”
Angew. Chem. Int. Ed.
38
,
113
115
(
1999
).
50.
S.
Benmansour
,
F.
Setifi
,
S.
Triki
, and
C. J.
Gómez-García
, “
Linkage isomerism in coordination polymers
,”
Inorg. Chem.
51
,
2359
2365
(
2012
).
51.
E.
Milin
,
S.
Belaïd
,
V.
Patinec
,
S.
Triki
,
G.
Chastanet
, and
M.
Marchivie
, “
Dinuclear spin crossover complexes based on tetradentate and bridging cyanocarbanion ligands
,”
Inorg. Chem.
55
,
9038
9046
(
2016
).
52.
S.
Benmansour
,
C.
Atmani
,
F.
Setifi
,
S.
Triki
,
M.
Marchivie
, and
C. J.
Gómez-García
, “
Polynitrile anions as ligands: From magnetic polymeric architectures to spin crossover materials
,”
Coord. Chem. Rev.
254
,
1468
1478
(
2010
).
53.
G.
Dupouy
,
M.
Marchivie
,
S.
Triki
,
J.
Sala-Pala
,
J.-Y.
Salaün
,
C. J.
Gómez-García
, and
P.
Guionneau
, “
The key role of the intermolecular π-π interactions on the presence of spin crossover in neutral [Fe(abpt)2A2] complexes (A = terminal monoanion N-ligand)
,”
Inorg. Chem.
47
,
8921
8931
(
2008
).
54.
F.
Setifi
,
S.
Benmansour
,
M.
Marchivie
,
G.
Dupouy
,
S.
Triki
,
J.
Sala-Pala
,
J.-Y.
Salaün
,
C. J.
Gómez-García
,
S.
Pillet
,
C.
Lecomte
, and
E.
Ruiz
, “
Magnetic bistability and thermochromism in molecular CuII chain
,”
Inorg. Chem.
48
,
1269
1271
(
2009
).
55.
G.
Dupouy
,
M.
Marchivie
,
S.
Triki
,
J.
Sala-Pala
,
C. J.
Gómez-García
,
S.
Pillet
,
C.
Lecomte
, and
J.-F.
Létard
, “
Photoinduced HS state in the first spin-crossover chain containing a cyanocarbanion as bridging ligand
,”
Chem. Commun.
2009
,
3404
3406
(
2009
).
56.
G.
Dupouy
,
S.
Triki
,
M.
Marchivie
,
N.
Cosquer
,
C. J.
Gómez-García
,
S.
Pillet
,
E.-E.
Bendeif
,
C.
Lecomte
,
S.
Asthana
, and
J.-F.
Létard
, “
Cyanocarbanion-based spin crossover materials: Photocrystallographic and photomagnetic studies of a new iron (II) neutral chain
,”
Inorg. Chem.
49
,
9358
9368
(
2010
).
57.
S.
Lethu
and
J.
Dubois
, “
SNAr and palladium catalyzed reactions of deactivated thiophene: Application to the synthesis of protein farnesyltransferase inhibitors
,”
Eur. J. Org. Chem.
2011
,
3920
3931
(
2011
);
P. G.
Baraldi
,
F.
Fruttarolo
,
M. A.
Tabrizi
,
D.
Preti
,
R.
Romagnoli
,
H.
El-Kashef
,
A.
Moorman
,
K.
Varani
,
S.
Stefania Gessi
,
S.
Merighi
, and
P. A.
Borea
, “
Design, synthesis, and biological evaluation of C9- and C2-substituted pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidines as new A2A and A3 adenosine receptors antagonists
,”
J. Med. Chem.
46
,
1229
1241
(
2003
).
[PubMed]
58.
P.
Guionneau
,
M.
Marchivie
,
G.
Bravic
,
J.-F.
Létard
, and
D.
Chasseau
, “
Structural aspects of spin crossover. Example of the [FeIILn(NCS)2] complexes
,”
Top. Curr. Chem.
234
,
97
128
(
2004
).
59.
M.
Buron-Le Cointe
,
J.
Hébert
,
C.
Baldé
,
N.
Moisan
,
L.
Toupet
,
P.
Guionneau
,
J. F.
Létard
,
E.
Freysz
,
H.
Cailleau
, and
E.
Collet
, “
Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs
,”
Phys. Rev. B
85
,
064114
(
2012
).
60.
J. K.
McCusker
,
A. L.
Rheingold
, and
D. N.
Hendrickson
, “
Variable-temperature studies of laser-initiated 5T21A1 intersystem crossing in spin-crossover complexes: Empirical correlations between activation parameters and ligand structure in a series of polypyridyl. Ferrous complexes
,”
Inorg. Chem.
35
,
2100
2112
(
1996
).
61.
M.
Marchivie
,
P.
Guionneau
,
J.-F.
Létard
, and
D.
Chasseau
, “
Photo-induced spin-transition: The role of the iron(II) environment distortion
,”
Acta Crystallogr. B
61
,
25
28
(
2005
).
62.
M. A.
Spackman
and
D.
Jayatilaka
,
CrystEngComm
11
,
19
32
(
2009
).
63.
M. A.
Spackman
and
J. J.
McKinnon
,
CrystEngComm
4
,
378
(
2002
);
J. J.
McKinnon
,
M. A.
Spackman
, and
A. S.
Mitchell
,
Acta Crystallogr. B
60
,
627
(
2004
).
[PubMed]
64.
J. J.
McKinnon
,
D.
Jayatilaka
, and
M. A.
Spackman
,
Chem. Commun.
37
,
3814
(
2007
).
65.
S. K.
Wolff
,
D. J.
Grimwood
,
J. J.
McKinnon
,
M. J.
Turner
,
D.
Jayatilaka
, and
M. A.
Spackman
,
CrystalExplorer (Version 3.1)
(
University of Western Australia
,
2012
).
66.
K.
Nakamoto
,
Infrared and Raman Spectra of Inorganic and Coordination Compounds—Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry
(
Wiley
,
2015
).
67.
M.
Sorai
and
S.
Seki
, “
Phonon coupled cooperative low-spin 1A1 ( high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals
,”
J. Phys. Chem. Solids
35
,
555
570
(
1974
).
68.
G.
Brehm
,
M.
Reiher
,
B.
Le Guennic
,
M.
Leibold
,
S.
Schindler
,
F. W.
Heinemann
, and
S.
Schneider
, “
Investigation of the low-spin to high-spin transition in a novel [Fe(pmea)(NCS)2] complex by IR and Raman spectroscopy and DFT calculations
,”
J. Raman Spectrosc.
37
,
108
122
(
2006
).
69.
Y.
Park
,
Y. M.
Jung
,
S.
Sarker
,
J.-J.
Lee
,
Y.
Lee
,
K.
Lee
,
J.-J.
Oh
, and
S.-W.
Joo
, “
Temperature-dependent infrared spectrum of (Bu4N)2[Ru(dcbpyH)2(NCS)2] on nanocrystalline TiO2 surfaces
,”
Sol. Energy Mater. Sol. Cells
94
,
857
864
(
2010
).
70.
V.
Varma
and
J.-R.
Fernandes
, “
An infrared spectroscopic study of the low-spin-high-spin transition in in FexMn1−x(Phen)2(NCS)2: A composition-induced change in the order of the spin-state transition
,”
Chem. Phys. Lett.
167
,
367
370
(
1990
).
71.
G.
Sankar
,
J. M.
Thomas
,
V.
Varma
,
G. U.
Kulkani
, and
C. N. R.
Rao
, “
An investigation of the first-order spin-state transition in the Fe(Phen)2(NCS)2 EXAFS and infrared spectroscopy
,”
Chem. Phys. Lett.
251
,
79
83
(
1996
).
72.
E.
Smit
,
D.
de Waal
, and
A. M.
Heyns
, “
The spin-transition complexes [Fe(Htrz)3](ClO4)2 and [Fe(NH2trz)3](ClO4)2 I. FT-IR spectra of a low pressure and a low temperature phase transition
,”
Mater. Res. Bull.
35
,
1697
1707
(
2000
).
73.
P.
Durand
,
S.
Pillet
,
E.-E.
Bendeif
,
C.
Carteret
,
M.
Bouazaoui
,
H.
El Hamzaoui
,
B.
Capoen
,
L.
Salmon
,
S.
Hébert
,
J.
Ghanbaja
,
L.
Aranda
, and
D.
Schaniel
, “
Room temperature bistability with wide thermal hysteresis in a spin crossover silica nanocomposite
,”
J. Mater. Chem. C
1
,
1933
1942
(
2013
).
74.
J.-J.
Lee
,
H.-S.
Sheu
,
C.-R.
Lee
,
J.-M.
Chen
,
J.-F.
Lee
,
C.-C.
Wang
,
C.-H.
Huang
, and
Y.
Wang
, “
X-ray absorption spectroscopic studies on light-induced excited spin state trapping of an Fe(II) complex
,”
J. Am. Chem. Soc.
122
,
5742
5747
(
2000
).
75.
G. A.
Bain
and
J. F.
Berry
, “
Diamagnetic corrections and Pascal’s constants
,”
J. Chem. Educ.
85
,
532
536
(
2008
).
76.
CrysAlis-CCD 170 (Oxford Diffraction, 2002).
77.
A.
Sheldrick
, “
SHELX97
,” In
Program for Crystal Structure Analysis
(
University of Gottingen
,
Gottingen
,
1997
).
78.
O. V.
Dolomanov
,
L. J.
Bourhis
,
R. J.
Gildea
,
J. A. K.
Howard
, and
H.
Puschmann
, “
OLEX2: A complete structure, refinement and analysis program
,”
J. Appl. Crystallogr.
42
,
339
341
(
2009
).

Supplementary Material

You do not currently have access to this content.