Azo-doped liquid crystal polymer network (LCN) thin films are promising candidates for the development of soft-robots. These azo-doped LCNs exhibit either photo-chemo-mechanical or photo-thermo-mechanical or both deformations based on the type of azo-molecule used for doping, the type of external stimulus, and the surrounding environment. This paper presents a computational model capable of simulating this combined photo-chemo/thermo-mechanical deformation phenomena. Moreover, the influence of attenuation of light through the thickness and the influence of variation in the through-thickness alignment of mesogens are considered in the model. A detailed investigation of the influence of isomerization parameters, light intensity, and thermal parameters on light-induced temperature rise and the resultant deformations is also presented. The developed model shows good agreement with the experimental measurements available in the literature for the temperatures and deformations attained by azo-doped LCN films under illumination while placed in air/water.

1.
T. J.
White
and
D. J.
Broer
,
Nat. Mater.
14
,
1087
(
2015
).
2.
H. K.
Bisoyi
and
Q.
Li
,
Chem. Rev.
116
,
15089
(
2016
).
3.
X.
Pang
,
J.-A.
Lv
,
C.
Zhu
,
L.
Qin
, and
Y.
Yu
,
Adv. Mater.
31
,
1904224
(
2019
).
4.
D.-D.
Han
,
Y.-L.
Zhang
,
J.-N.
Ma
,
Y.-Q.
Liu
,
B.
Han
, and
H.-B.
Sun
,
Adv. Mater.
28
,
8328
(
2016
).
5.
T. H.
Ware
,
M. E.
McConney
,
J. J.
Wie
,
V. P.
Tondiglia
, and
T. J.
White
,
Science
347
,
982
(
2015
).
6.
K.
Mehta
,
A. R.
Peeketi
,
L.
Liu
,
D.
Broer
,
P.
Onck
, and
R. K.
Annabattula
,
Appl. Phys. Rev.
7
,
041306
(
2020
).
7.
H.
Wermter
and
H.
Finkelmann
,
e-Polymers
1
,
1
(
2001
).
8.
C.
Huang
,
J.-A.
Lv
,
X.
Tian
,
Y.
Wang
,
J.
Liu
, and
Y.
Yu
,
Smart Mater. Struct.
25
,
095009
(
2016
).
9.
C.
Ferrantini
,
J. M.
Pioner
,
D.
Martella
,
R.
Coppini
,
N.
Piroddi
,
P.
Paoli
,
M.
Calamai
,
F. S.
Pavone
,
D. S.
Wiersma
,
C.
Tesi
et al.,
Circ. Res.
124
,
e44
(
2019
).
10.
J. A. H. P.
Sol
,
A. R.
Peeketi
,
N.
Vyas
,
A. P. H. J.
Schenning
,
R. K.
Annabattula
, and
M. G.
Debije
,
Chem. Commun.
55
,
1726
(
2019
).
11.
C.
Camargo
,
H.
Campanella
,
J.
Marshall
,
N.
Torras
,
K.
Zinoviev
,
E.
Terentjev
, and
J.
Esteve
,
J. Micromech. Microeng.
22
,
075009
(
2012
).
12.
C. L.
van Oosten
,
C. W. M.
Bastiaansen
, and
D. J.
Broer
,
Nat. Mater.
8
,
677
(
2009
).
13.
Q.
Liu
,
Y.
Liu
,
J.-A.
Lv
,
E.
Chen
, and
Y.
Yu
,
Adv. Intell. Syst.
1
,
1900060
(
2019
).
14.
A. H.
Gelebart
,
D. J.
Mulder
,
M.
Varga
,
A.
Konya
,
G.
Vantomme
,
E.
Meijer
,
R. L.
Selinger
, and
D. J.
Broer
,
Nature
546
,
632
(
2017
).
15.
C.
Ahn
,
K.
Li
, and
S.
Cai
,
ACS Appl. Mater. Interfaces
10
,
25689
(
2018
).
16.
M. P.
da Cunha
,
A. R.
Peeketi
,
A.
Ramgopal
,
R. K.
Annabattula
, and
A. P.
Schenning
,
ChemistryOpen
9
,
1149
(
2020
).
17.
C.
Li
,
Y.
Zhang
,
J.
Ju
,
F.
Cheng
,
M.
Liu
,
L.
Jiang
, and
Y.
Yu
,
Adv. Funct. Mater.
22
,
760
(
2012
).
18.
C.
Li
,
F.
Cheng
,
J.-A.
Lv
,
Y.
Zhao
,
M.
Liu
,
L.
Jiang
, and
Y.
Yu
,
Soft Matter
8
,
3730
(
2012
).
19.
D.
Liu
and
D. J.
Broer
,
Soft Matter
10
,
7952
(
2014
).
20.
D.
Liu
and
D. J.
Broer
,
Angew. Chem. Int. Ed.
53
,
4542
(
2014
).
21.
M. P.
Da Cunha
,
E. A.
van Thoor
,
M. G.
Debije
,
D. J.
Broer
, and
A. P.
Schenning
,
J. Mater. Chem. C
7
,
13502
(
2019
).
22.
G.
Zimmerman
,
L.-Y.
Chow
, and
U.-J.
Paik
,
J. Am. Chem. Soc.
80
,
3528
(
1958
).
23.
O.
Sadovski
,
A. A.
Beharry
,
F.
Zhang
, and
G. A.
Woolley
,
Angew. Chem. Int. Ed.
48
,
1484
(
2009
).
24.
C.
Knie
,
M.
Utecht
,
F.
Zhao
,
H.
Kulla
,
S.
Kovalenko
,
A. M.
Brouwer
,
P.
Saalfrank
,
S.
Hecht
, and
D.
Bléger
,
Chem. Eur. J.
20
,
16492
(
2014
).
25.
Z.
Ahmed
,
A.
Siiskonen
,
M.
Virkki
, and
A.
Priimagi
,
Chem. Commun.
53
,
12520
(
2017
).
26.
C.
Van Oosten
,
K.
Harris
,
C.
Bastiaansen
, and
D.
Broer
,
Eur. Phys. J. E
23
,
329
(
2007
).
27.
M. L.
Dunn
,
J. Appl. Phys.
102
,
013506
(
2007
).
28.
M. L.
Dunn
and
K.
Maute
,
Mech. Mater.
41
,
1083
(
2009
).
29.
D.
Corbett
and
M.
Warner
,
Phys. Rev. Lett.
99
,
174302
(
2007
).
30.
D.
Corbett
,
C. L.
Van Oosten
, and
M.
Warner
,
Phys. Rev. A: At. Mol. Opt. Phys.
78
,
013823
(
2008
).
31.
D.
Corbett
and
M.
Warner
,
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
77
,
051710
(
2008
).
32.
L.
Cheng
,
Y.
Torres
,
K.
Min Lee
,
A. J.
McClung
,
J.
Baur
,
T. J.
White
, and
W. S.
Oates
,
J. Appl. Phys.
112
,
013513
(
2012
).
33.
L.
Vetráková
,
V.
Ladányi
,
J.
Al Anshori
,
P.
Dvořák
,
J.
Wirz
, and
D.
Heger
,
Photochem. Photobiol. Sci.
16
,
1749
(
2017
).
34.
D.
Corbett
and
M.
Warner
,
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
78
,
1
(
2008
).
35.
K. M.
Lee
and
T. J.
White
,
Macromolecules
45
,
7163
(
2012
).
36.
L.
Liu
and
P. R.
Onck
,
Soft Matter
14
,
2411
(
2018
).
37.
K.
Mehta
,
A. R.
Peeketi
,
J. A.
Sol
,
M. G.
Debije
,
P. R.
Onck
, and
R. K.
Annabattula
,
Mech. Mater.
147
,
103388
(
2020
).
38.
Defined as P 2 ( x ) = ( 3 x 2 1 ) / 2 .
39.
D.
Statman
and
I.
Janossy
,
J. Chem. Phys.
118
,
3222
(
2003
).
41.
T.
Kato
,
T.
Nagahara
,
Y.
Agari
, and
M.
Ochi
,
J. Polym. Sci. Part B: Polym. Phys.
43
,
3591
(
2005
).
42.
N.
Torras
,
K.
Zinoviev
,
C.
Camargo
,
E. M.
Campo
,
H.
Campanella
,
J.
Esteve
,
J.
Marshall
,
E.
Terentjev
,
M.
Omastová
,
I.
Krupa
et al.,
Sens. Actuators A
208
,
104
(
2014
).
43.
J.
Shin
,
J.
Sung
,
M.
Kang
,
X.
Xie
,
B.
Lee
,
K. M.
Lee
,
T. J.
White
,
C.
Leal
,
N. R.
Sottos
,
P. V.
Braun
et al.,
Proc. Natl. Acad. Sci. U.S.A.
116
,
5973
(
2019
).
44.
M.
Smith
,
ABAQUS/Standard User’s Manual, Version 6.9
(
Dassault Systèmes Simulia Corp.
,
2009
).
45.
A.
Skandani
,
J. A.
Clement
,
S.
Tristram-Nagle
, and
M. R.
Shankar
,
Polymer
133
,
30
(
2017
).
46.
D.
Liu
,
L.
Liu
,
P. R.
Onck
, and
D. J.
Broer
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
3880
(
2015
).
47.
S.
Serak
,
N.
Tabiryan
,
R.
Vergara
,
T. J.
White
,
R. A.
Vaia
, and
T. J.
Bunning
,
Soft Matter
6
,
779
(
2010
).
48.
A. H.
Gelebart
,
G.
Vantomme
,
E.
Meijer
, and
D. J.
Broer
,
Adv. Mater.
29
,
1606712
(
2017
).
You do not currently have access to this content.