This paper examines the feasibility of cloaking an obstacle using Plate-type Acoustic Metamaterials (PAMs). We present two distinct strategies to cloak this obstacle, using either the near-zero-density regime of a periodic arrangement of plates or the acoustic doping phenomenon to achieve simultaneous zero-phase propagation and impedance matching. The strong limitations induced by viscothermal and viscoelastic losses that cannot be avoided in such a system are studied. A hiding zone is reported analytically, numerically, and experimentally. In contrast to cloaking, where zero-phase propagation must be accompanied by total transmission and zero reflection, the hiding configuration requires that the scattering properties of the hiding device must not be affected by the presence of the obstacle embedded in it. Contrary to cloaking, the hiding phenomenon is achievable even with a realistic PAM possessing unavoidable losses.

1.
A. N.
Norris
, “
Acoustic cloaking
,”
Acoust. Today
11
,
38
46
(
2015
).
2.
R.
Fleury
,
F.
Monticone
, and
A.
Alú
, “
Invisibility and cloaking: Origins, present, and future perspectives
,”
Phys. Rev. Appl.
4
,
037001
(
2015
).
3.
F.
Zangeneh-Nejad
and
R.
Fleury
, “
Active times for acoustic metamaterials
,”
Rev. Phys.
4
,
100031
(
2019
).
4.
F.
Yang
and
Z.
Lei Mei
, “
Parity-time symmetric cloak with isotropic modulation
,”
J. Phys. D: Appl. Phys.
49
,
21LT01
(
2016
).
5.
H.-X.
Li
,
M.
Rosendo-López
,
Y.-F.
Zhu
,
X.-D.
Fan
,
D.
Torrent
,
B.
Liang
,
J.-C.
Cheng
, and
J.
Christensen
, “
Ultrathin acoustic parity-time symmetric metasurface cloak
,”
Research
2019
,
1
7
(
2019
).
6.
H.
Chen
and
C. T.
Chan
, “
Acoustic cloaking in three dimensions using acoustic metamaterials
,”
Appl. Phys. Lett.
91
,
183518
(
2007
).
7.
J. B.
Pendry
and
J.
Li
, “
An acoustic metafluid: Realizing a broadband acoustic cloak
,”
New J. Phys.
10
,
115032
(
2008
).
8.
A. N.
Norris
, “
Acoustic cloaking theory
,”
Proc. R. Soc. A
464
,
2411
2434
(
2008
).
9.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
45
(
2007
).
10.
H.
Chen
and
C. T.
Chan
, “
Acoustic cloaking and transformation acoustics
,”
J. Phys. D: Appl. Phys.
43
,
113001
(
2010
).
11.
J. B.
Pendry
, “
Controlling electromagnetic fields
,”
Science
312
,
1780
1782
(
2006
).
12.
D.
Schurig
,
J. B.
Pendry
, and
D. R.
Smith
, “
Calculation of material properties and ray tracing in transformation media
,”
Opt. Express
14
,
9794
(
2006
).
13.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alú
, “
Controlling sound with acoustic metamaterials
,”
Nat Rev Mater
1
,
16001
(
2016
).
14.
S. A.
Cummer
,
B.-I.
Popa
,
D.
Schurig
,
D. R.
Smith
,
J.
Pendry
,
M.
Rahm
, and
A.
Starr
, “
Scattering theory derivation of a 3D acoustic cloaking shell
,”
Phys. Rev. Lett.
100
,
024301
(
2008
).
15.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Acoustic cloaking in two dimensions: A feasible approach
,”
New J. Phys.
10
,
063015
(
2008
).
16.
B.-I.
Popa
and
S. A.
Cummer
, “
Design and characterization of broadband acoustic composite metamaterials
,”
Phys. Rev. B
80
,
174303
(
2009
).
17.
L.
Zigoneanu
,
B.-I.
Popa
,
A. F.
Starr
, and
S. A.
Cummer
, “
Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density
,”
J. Appl. Phys.
109
,
054906
(
2011
).
18.
G. W.
Milton
and
A. V.
Cherkaev
, “
Which elasticity tensors are realizable?
,”
J. Eng. Mater. Technol.
117
,
483
493
(
1995
).
19.
C. L.
Scandrett
,
J. E.
Boisvert
, and
T. R.
Howarth
, “
Acoustic cloaking using layered pentamode materials
,”
J. Acoust. Soc. Am.
127
,
2856
2864
(
2010
).
20.
N. H.
Gokhale
,
J. L.
Cipolla
, and
A. N.
Norris
, “
Special transformations for pentamode acoustic cloaking
,”
J. Acoust. Soc. Am.
132
,
2932
2941
(
2012
).
21.
Y.
Chen
,
X.
Liu
, and
G.
Hu
, “
Latticed pentamode acoustic cloak
,”
Sci. Rep.
5
,
15745
(
2015
).
22.
V. M.
García-Chocano
,
L.
Sanchis
,
A.
Díaz-Rubio
,
J.
Martínez-Pastor
,
F.
Cervera
,
R.
Llopis-Pontiveros
, and
J.
Sánchez-Dehesa
, “
Acoustic cloak for airborne sound by inverse design
,”
Appl. Phys. Lett.
99
,
074102
(
2011
).
23.
L.
Sanchis
,
V. M.
García-Chocano
,
R.
Llopis-Pontiveros
,
A.
Climente
,
J.
Martínez-Pastor
,
F.
Cervera
, and
J.
Sánchez-Dehesa
, “
Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere
,”
Phys. Rev. Lett.
110
,
124301
(
2013
).
24.
B.-I.
Popa
,
L.
Zigoneanu
, and
S. A.
Cummer
, “
Experimental acoustic ground cloak in air
,”
Phys. Rev. Lett.
106
,
253901
(
2011
).
25.
L.
Zigoneanu
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Three-dimensional broadband omnidirectional acoustic ground cloak
,”
Nat. Mater
13
,
352
355
(
2014
).
26.
Y.
Jin
,
X.
Fang
,
Y.
Li
, and
D.
Torrent
, “
Engineered diffraction gratings for acoustic cloaking
,”
Phys. Rev. Appl.
11
,
011004
(
2019
).
27.
Y.
Yang
,
H.
Wang
,
F.
Yu
,
Z.
Xu
, and
H.
Chen
, “
A metasurface carpet cloak for electromagnetic, acoustic and water waves
,”
Sci. Rep.
6
,
20219
(
2016
).
28.
C.
Faure
,
O.
Richoux
,
S.
Félix
, and
V.
Pagneux
, “
Experiments on metasurface carpet cloaking for audible acoustics
,”
Appl. Phys. Lett.
108
,
064103
(
2016
).
29.
M.
Dubois
,
C.
Shi
,
Y.
Wang
, and
X.
Zhang
, “
A thin and conformal metasurface for illusion acoustics of rapidly changing profiles
,”
Appl. Phys. Lett.
110
,
151902
(
2017
).
30.
S.
Zhai
,
H.
Chen
,
C.
Ding
,
L.
Li
,
F.
Shen
,
C.
Luo
, and
X.
Zhao
, “
Ultrathin skin cloaks with metasurfaces for audible sound
,”
J. Phys. D: Appl. Phys.
49
,
225302
(
2016
).
31.
H.
Esfahlani
,
S.
Karkar
,
H.
Lissek
, and
J. R.
Mosig
, “
Acoustic carpet cloak based on an ultrathin metasurface
,”
Phys. Rev. B
94
,
014302
(
2016
).
32.
L.-Y.
Zheng
,
Y.
Wu
,
X.
Ni
,
M.-H.
Chen
,
Z.-G.
Lu
, and
Y.-F.
Chen
, “
Acoustic cloaking by a near-zero-index phononic crystal
,”
Appl. Phys. Lett.
104
,
161904
(
2014
).
33.
J.
Zhao
,
Z. N.
Chen
,
B.
Li
, and
C.-W.
Qiu
, “
Acoustic cloaking by extraordinary sound transmission
,”
J. Appl. Phys.
117
,
214507
(
2015
).
34.
R.
Fleury
and
A.
Alú
, “
Extraordinary sound transmission through density-near-zero ultranarrow channels
,”
Phys. Rev. Lett.
111
,
055501
(
2013
).
35.
R.
Graciá-Salgado
,
V. M.
García-Chocano
,
D.
Torrent
, and
J.
Sánchez-Dehesa
, “
Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications
,”
Phys. Rev. B
88
,
1
12
(
2013
).
36.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N. H.
Chan
, and
P.
Sheng
, “
Membrane-type acoustic metamaterial with negative dynamic mass
,”
Phys. Rev. Lett.
101
,
1
4
(
2008
).
37.
F.
Bongard
,
H.
Lissek
, and
J. R.
Mosig
, “
Acoustic transmission line metamaterial with negative/zero/positive refractive index
,”
Phys. Rev. B
82
,
094306
(
2010
).
38.
J. J.
Park
,
K. J.
Lee
,
O. B.
Wright
,
M. K.
Jung
, and
S. H.
Lee
, “
Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials
,”
Phys. Rev. Lett.
110
,
1
5
(
2013
).
39.
M.
Malléjac
,
A.
Merkel
,
J.
Sánchez-Dehesa
,
J.
Christensen
,
V.
Tournat
,
J. P.
Groby
, and
V.
Romero-García
, “
Zero-phase propagation in realistic plate-type acoustic metamaterials
,”
Appl. Phys. Lett.
115
,
134101
(
2019
).
40.
Y.
Gu
,
Y.
Cheng
,
J.
Wang
, and
X.
Liu
, “
Controlling sound transmission with density-near-zero acoustic membrane network
,”
J. Appl. Phys.
118
,
024505
(
2015
).
41.
M.
Malléjac
,
A.
Merkel
,
V.
Tournat
,
J.-P.
Groby
, and
V.
Romero-García
, “
Doping of a plate-type acoustic metamaterial
,”
Phys. Rev. B
102
,
060302(R)
(
2020
).
42.
V. C.
Henríquez
,
V. M.
García-Chocano
, and
J.
Sánchez-Dehesa
, “
Viscothermal losses in double-negative acoustic metamaterials
,”
Phys. Rev. Appl.
8
,
014029
(
2017
).
43.
B. H.
Song
and
J. S.
Bolton
, “
A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials
,”
J. Acoust. Soc. Am.
107
,
1131
1152
(
2000
).
44.
M. R.
Stinson
, “
The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape
,”
J. Acoust. Soc. Am.
89
,
550
558
(
1991
).
45.
I.
Liberal
,
A. M.
Mahmoud
,
Y.
Li
,
B.
Edwards
, and
N.
Engheta
, “
Photonic doping of epsilon-near-zero media
,”
Science
355
,
1058
1062
(
2017
).
46.
I.
Liberal
,
Y.
Li
, and
N.
Engheta
, “
Reconfigurable epsilon-near-zero metasurfaces via photonic doping
,”
Nanophotonics
7
,
1117
1127
(
2018
).
47.
V. C.
Henríquez
,
V. M.
García-Chocano
, and
J.
Sánchez-Dehesa
, “
Viscothermal losses in double negative acoustic metamaterials
,”
Phys. Rev. Appl.
8
,
014029
(
2017
).
You do not currently have access to this content.