Masers, the microwave analog of lasers, are an important class of devices that can be used to generate highly coherent and stable microwave signals as well as quantum-limited amplification of microwave photons. Recently, the interest in such devices has increased, probably owing to experiments demonstrating the successful operation at room temperature of solid-state maser employing defects in diamond. These defects, called nitrogen vacancy (NV) centers, are comprised of a negatively charged substitutional nitrogen that replaces one of the diamond crystal lattice’s carbons and a vacancy adjacent to the excluded carbon atom. The performance of diamond-based masers, in terms of gain, noise, bandwidth, frequency of operation, and saturation, greatly depends upon the specific diamond crystal composition and its geometry in the respective microwave device. The currently available data on these issues are scarce and sometimes conflicting. It is, therefore, important to provide additional experimental data, complemented by theoretical analysis, to further optimize the required diamond material and thus enhance the capabilities of diamond-based maser technology. The latter is currently limited to operate only as an oscillator at very small bandwidths, with low saturation power. Here, we provide experimental results on a set of important parameters affecting diamond maser operation, such as the population and linewidth of the electron spin energy levels of the NVs under light illumination, as well as their relaxation times for several different diamond material compositions. These results are then used to point out which diamond material compositions and crystal geometry may be best suitable for maser-type applications.

1.
A. E.
Siegman
,
Microwave Solid-State Masers
(
McGraw-Hill
,
1964
).
2.
J.
Yuen
,
G.
Resch
, and
C.
Stelzried
, “
Telecommunications technology development for the deep space network
,”
Acta Astronaut.
25
,
51
(
1991
).
3.
R. J.
Collier
,
M. A.
Collins
, and
D. G.
Moss
, “
An x-band electron spin resonance spectrometer with a ruby maser preamplifier
,”
J. Phys. E: Sci. Instrum.
1
,
607
(
1968
).
4.
C.
Ditchfield
, “
Noise limits of a maser system
,”
Solid State Electron.
4
,
171
(
1962
).
5.
L. L.
Lewis
, “
An introduction to frequency standards
,”
Proc. IEEE
79
,
927
(
1991
).
6.
M. L.
Jones
,
G. J.
Wilkes
, and
B. T. H.
Varcoe
, “
Single microwave photon detection in the micromaser
,”
J. Phys. B
42
,
145501
(
2009
).
7.
H.
Hsu
and
F. K.
Tittel
, “
Optical pumping of microwave masers
,”
Proc. IEEE
51
,
185
(
1963
).
8.
E.
Sabisky
and
C.
Anderson
, “
Solid-state optically pumped microwave masers
,”
IEEE J. Quantum Electron.
3
,
287
(
1967
).
9.
A.
Blank
and
H.
Levanon
, “
Applications of photoinduced electron spin polarization at room temperature to microwave technology
,”
Appl. Phys. Lett.
79
,
1694
(
2001
).
10.
A.
Blank
and
H.
Levanon
, “
Toward maser action at room temperature by triplet-radical interaction and its application to microwave technology
,”
Riken Rev.
44
,
128
(
2002
) available at https://dl.ndl.go.jp/info:ndljp/pid/8428748.
11.
M.
Oxborrow
,
J. D.
Breeze
, and
N. M.
Alford
, “
Room-temperature solid-state maser
,”
Nature
488
,
353
(
2012
).
12.
J. D.
Breeze
,
E.
Salvadori
,
J.
Sathian
,
N. M.
Alford
, and
C. W. M.
Kay
, “
Continuous-wave room-temperature diamond maser
,”
Nature
555
,
493
(
2018
).
13.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
, “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
,
1
(
2013
).
14.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
,
M. J.
Turner
,
C. A.
Hart
,
L. M.
Pham
, and
R. L.
Walsworth
, “
Sensitivity optimization for NV-diamond magnetometry
,”
Rev. Mod. Phys.
92
,
015004
(
2020
).
15.
S.
Stoll
,
A.
Ozarowski
,
R. D.
Britt
, and
A.
Angerhofer
, “
Atomic hydrogen as high-precision field standard for high-field EPR
,”
J. Magn. Reson.
207
,
158
(
2010
).
16.
M.
Tseitlin
,
S. S.
Eaton
, and
G. R.
Eaton
, “
Uncertainty analysis for absorption and first-derivative electron paramagnetic resonance spectra
,”
Concepts Magn. Reson. Part A
40A
,
295
(
2012
).
17.
D. F.
Howarth
,
J. A.
Weil
, and
Z.
Zimpel
, “
Generalization of the lineshape useful in magnetic resonance spectroscopy
,”
J. Magn. Reson.
161
,
215
(
2003
).
18.
L.
Shtirberg
,
Y.
Twig
,
E.
Dikarov
,
R.
Halevy
,
M.
Levit
, and
A.
Blank
, “
High-sensitivity q-band electron spin resonance imaging system with submicron resolution
,”
Rev. Sci. Instrum.
82
,
043708
(
2011
).
19.
W. B.
Mims
and
J.
Peisach
, “Electron spin echo spectroscopy and the study of metalloproteins,” in Biological Magnetic Resonance, edited by L. J. Berliner and J. Reuben (Springer US, Boston, MA, 1981), Vol. 3, Chap. 5, pp. 258–260.
20.
A.
Benninghoven
, “
Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS)
,”
Angew. Chem. Int. Ed. English
33
,
1023
(
1994
).
21.
J.-P.
Tetienne
,
L.
Rondin
,
P.
Spinicelli
,
M.
Chipaux
,
T.
Debuisschert
,
J.-F.
Roch
, and
V.
Jacques
, “
Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging
,”
New J. Phys.
14
,
103033
(
2012
).
22.
M.
Drake
,
E.
Scott
, and
J. A.
Reimer
, “
Influence of magnetic field alignment and defect concentration on nitrogen-vacancy polarization in diamond
,”
New J. Phys.
18
,
013011
(
2015
).
23.
M. E.
Drake
, “Characterizing and modeling spin polarization from optically pumped nitrogen-vacancy centers in diamond at high magnetic fields,” UC Berkeley thesis (University of California, 2016).
24.
M.
Loretz
,
H.
Takahashi
,
T. F.
Segawa
,
J. M.
Boss
, and
C. L.
Degen
, “
Optical hyperpolarization of nitrogen donor spins in bulk diamond
,”
Phys. Rev. B
95
,
064413
(
2017
).
25.
H.
Clevenson
,
M. E.
Trusheim
,
C.
Teale
,
T.
Schröder
,
D.
Braje
, and
D.
Englund
, “
Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide
,”
Nat. Phys.
11
,
393
(
2015
).
26.
L.
Jin
,
M.
Pfender
,
N.
Aslam
,
P.
Neumann
,
S.
Yang
,
J.
Wrachtrup
, and
R.-B.
Liu
, “
Proposal for a room-temperature diamond maser
,”
Nat. Commun.
6
,
8251
(
2015
).
27.
G. D.
Fuchs
,
V. V.
Dobrovitski
,
R.
Hanson
,
A.
Batra
,
C. D.
Weis
,
T.
Schenkel
, and
D. D.
Awschalom
, “
Excited-state spectroscopy using single spin manipulation in diamond
,”
Phys. Rev. Lett.
101
,
117601
(
2008
).
28.
N.
Reddy
,
N.
Manson
, and
E.
Krausz
, “
Two-laser spectral hole burning in a colour centre in diamond
,”
J. Lumin.
38
,
46
(
1987
).
29.
C.
Poole
,
Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques
(
Dover Publications
,
Mineola, NY
,
1996
).
You do not currently have access to this content.