Lanthanide-doped luminescent materials have drawn great attention due to their lighting, display, and sensing applications. However, their emission intensity usually decreases with increasing temperature, leading to a weaken performance. In this work, the Er3+-doped Yb2Mo3O12 microcrystals with optical temperature sensing properties have been synthesized by a solid-phase sintering route. Under the excitation of a 980 nm laser, the sample shows enhanced upconversion emissions as temperature rises, which is attributed to the negative thermal expansion in the crystal structure and enhanced crystal field strength. At the same time, based on the luminous intensity ratio of two thermally coupled energy levels (Er3+:2H11/2,4S3/2), the temperature sensing properties of the prepared microcrystals were studied. This work achieves high SR (1207.4/T) in the range from 313 to 573 K, and it is accompanied by a 21-fold enhancement of the upconversion emission intensity. As a whole, this is an excellent material that can be used for optical temperature sensing with highly sensitive and enhanced upconversion emission.

1.
P.
Du
,
W.
Ran
,
W.
Li
,
L.
Luo
, and
X.
Huang
,
J. Mater. Chem. C
7
,
10802
10809
(
2019
).
2.
A. M.
Kaczmarek
,
Y.
Maegawa
,
A.
Abalymov
,
A. G.
Skirtach
,
S.
Inagaki
, and
P.
Van Der Voort
,
ACS Appl. Mater. Interfaces
12
,
13540
13550
(
2020
).
3.
J.
Qiao
,
G.
Zhou
,
Y.
Zhou
,
Q.
Zhang
, and
Z.
Xia
,
Nat. Commun.
10
,
5267
(
2019
).
4.
J. C.
Zhang
,
X.
Wang
,
G.
Marriott
, and
C. N.
Xu
,
Prog. Mater Sci.
103
,
678
742
(
2019
).
5.
H.
Sun
,
Z.
Guo
,
Y.
Zhu
,
X.
Li
,
L.
Guan
,
D.
Peng
,
Q.
Zhang
, and
X.
Hao
,
Sol. Energy Mater. Sol. Cells
205
,
110253
(
2020
).
6.
H.
Dong
,
L. D.
Sun
, and
C. H.
Yan
,
Chem. Soc. Rev.
44
,
1608
1634
(
2015
).
7.
P.
Du
,
L. H.
Luo
,
W. P.
Li
, and
Q. Y.
Yue
,
J. Appl. Phys.
116
,
014102
(
2014
).
8.
P.
Du
,
L. H.
Luo
,
X. Y.
Huang
, and
J. S.
Yu
,
J. Colloid Interface Sci.
514
,
172
181
(
2018
).
9.
C.
Homann
,
L.
Krukewitt
,
F.
Frenzel
,
B.
Grauel
,
C.
Wurth
,
U.
Resch-Genger
, and
M.
Haase
,
Angew. Chem. Int. Ed.
57
,
8765
8769
(
2018
).
10.
R. X.
Yan
and
Y. D.
Li
,
Adv. Funct. Mater.
15
,
763
770
(
2005
).
11.
G. S.
Yi
and
G. M.
Chow
,
Adv. Funct. Mater.
16
,
2324
2329
(
2006
).
12.
Y. V.
Morozov
,
S.
Zhang
,
M. C.
Brennan
,
B.
Janko
, and
M.
Kuno
,
ACS Energy Lett.
2
,
2514
2515
(
2017
).
13.
X.
Qin
,
J.
Xu
,
Y.
Wu
, and
X.
Liu
,
ACS Cent. Sci.
5
,
29
42
(
2019
).
14.
B. P.
Singh
,
A. K.
Parchur
,
R. S.
Ningthoujam
,
P. V.
Ramakrishna
,
S.
Singh
,
P.
Singh
,
S. B.
Rai
, and
R.
Maalej
,
Chem. Chem. Phys.
16
,
22665
22676
(
2014
).
15.
G.
Gao
,
D.
Busko
,
S.
Kauffmann-Weiss
,
A.
Turshatov
,
I. A.
Howard
, and
B. S.
Richards
,
J. Mater. Chem. C
6
,
4163
4170
(
2018
).
16.
O.
Soriano-Romero
,
R.
Lozada-Morales
,
U.
Caldiño
,
A.
Méndez-Blas
,
C.
Falcony
,
E.
Álvarez
,
M.
Palomino-Ovando
, and
A. N.
Meza-Rocha
,
J. Alloys Compd.
777
,
886
893
(
2019
).
17.
P.
Chen
,
S.
Hou
,
Y.
Yang
,
Z.
Chen
,
L.
Yang
,
J.
Li
, and
N.
Dai
,
Nanoscale
10
,
3299
3306
(
2018
).
18.
R.
Dey
and
V. K.
Rai
,
Dalton Trans.
43
,
111
118
(
2014
).
19.
T.
Wei
,
C. Z.
Zhao
,
C. P.
Li
,
Y. B.
Lin
,
X.
Yang
, and
H. G.
Tan
,
J. Alloys Compd.
577
,
728
733
(
2013
).
20.
M. A.
Wederni
,
S.
Kraiem
,
R.
Mnassri
,
H.
Rahmouni
, and
K.
Khirouni
,
Ceram. Int.
44
,
21893
21901
(
2018
).
21.
G. Q.
Zhang
,
H.
Wang
,
J.
Guo
,
L.
He
,
D. D.
Wei
,
Q. B.
Yuan
, and
A.
Feteira
,
J. Am. Ceram. Soc.
98
,
528
533
(
2015
).
22.
Q. J.
Li
,
B. H.
Yuan
,
W. B.
Song
,
E. J.
Liang
, and
B.
Yuan
,
Chin. Phys. B
21
,
046501
(
2012
).
23.
Y.
Yamamura
,
S.
Ikeuchi
, and
K.
Saito
,
Chem. Mater.
21
,
3008
3016
(
2009
).
24.
M.
Müller
and
T.
Jüstel
,
J. Lumin.
155
,
398
404
(
2014
).
25.
Y. Z.
Cheng
,
X. Y.
Sun
,
X. L.
Xiao
,
X. F.
Liu
,
L.
Xue
, and
Z. B.
Hu
,
Chin. Chem. Lett.
28
,
1600
1606
(
2017
).
26.
J. L.
Wu
,
B. S.
Cao
,
F.
Lin
,
B. J.
Chen
,
J. S.
Sun
, and
B.
Dong
,
Ceram. Int.
42
,
18666
18673
(
2016
).
27.
Y.
Wu
,
T.
He
, and
L.
Lun
,
J. Photochem. Photobiol. A
376
,
135
139
(
2019
).
28.
R.
Dey
,
A.
Pandey
, and
V. K.
Rai
,
Sens. Actuators B Chem.
190
,
512
515
(
2014
).
29.
H.
Suo
,
X.
Zhao
,
Z.
Zhang
,
T.
Li
,
E. M.
Goldys
, and
C.
Guo
,
Chem. Eng. J.
313
,
65
73
(
2017
).
30.
Y.
Tian
,
B.
Tian
,
C. E.
Cui
,
P.
Huang
,
L.
Wang
, and
B.
Chen
,
RSC Adv.
5
,
14123
14128
(
2015
).
31.
W.
Xu
,
H.
Qi
,
L.
Zheng
,
Z.
Zhang
, and
W.
Cao
,
Opt. Lett.
40
,
5678
5681
(
2015
).
32.
J.
Zhang
,
H.
Zhao
,
X.
Zhang
,
X.
Wang
,
H.
Gao
,
Z.
Zhang
, and
W.
Cao
,
J. Phys. Chem. C
118
,
2820
2825
(
2014
).
33.
F.
Vetrone
,
R.
Naccache
,
A.
Zamarrón
,
A.
Juarranz de la Fuente
,
F.
Sanz-Rodríguez
,
L.
Martinez Maestro
,
E.
Martín Rodriguez
,
D.
Jaque
,
J.
García Solé
, and
J. A.
Capobianco
,
ACS Nano
4
,
3254
3258
(
2010
).
34.
Y.
Zhao
,
G.
Bai
,
Y.
Hua
,
Q.
Yang
,
L.
Chen
, and
S.
Xu
,
J. Lumin.
221
,
117037
(
2020
).
You do not currently have access to this content.