Though additive manufacturing and novel optimization techniques have led to many recent advances in elastic metamaterials, difficult fundamental challenges (e.g., narrow bandgaps) and practical challenges (e.g., dissipation and friction) remain. This work introduces simple and hierarchical resonant metamaterials made of soft polydimethylsiloxane rubber and removable steel insets. The additively manufactured samples are able to produce bandgaps with a gap–midgap ratio of 81.8%, which surpasses the majority of resonant, metamaterials of the same class and greatly outperforms analogous resonant structures with a stiff epoxy matrix. The role of several physical features on the transmission loss (TL) curve is assessed in detail numerically and compared to the experimental TL data. Matrix compliance is found to be a rich mechanism for bandgap widening with a dual effect: it deepens the traditional resonant bandgaps, and it can selectively shift certain vibrational modes to lower frequencies and aid in the merging of multiple bandgaps. This can lead to an overall increase of the bandgap width of over an order of magnitude. Viscous dissipation, friction, and the stochastic nature of geometrical inaccuracies common in additive manufacturing were also found to shape the TL curve and associated bandgaps to various degrees. Some of these mechanisms, combined with a soft frame, can further help merge bandgaps in rainbow or hierarchical designs and form ultrabroad, subwavelength bandgaps.

1.
G.
Milton
and
J.
Willis
, “
On modifications of Newton’s second law and linear continuum elastodynamics
,”
Proc. R. Soc. A
463
,
855
880
(
2007
).
2.
Y.
Liu
,
X.
Su
, and
C. T.
Sun
, “
Broadband elastic metamaterial with single negativity by mimicking lattice systems
,”
J. Mech. Phys. Solids
74
,
158
174
(
2015
).
3.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
(
5485
),
1734
1736
(
2000
).
4.
M.
Addouche
,
M. A.
Al-Lethawe
,
A.
Elayouch
, and
A.
Khelif
, “
Subwavelength waveguiding of surface phonons in pillars-based phononic crystal
,”
AIP Adv.
4
(
12
),
124303
(
2014
).
5.
A.
Sukhovich
,
B.
Merheb
,
K.
Muralidharan
,
J. O.
Vasseur
,
Y.
Pennec
,
P. A.
Deymier
, and
J. H.
Page
, “
Experimental and theoretical evidence for subwavelength imaging in phononic crystals
,”
Phys. Rev. Lett.
102
,
154301
(
2009
).
6.
A. N.
Norris
and
A. L.
Shuvalov
, “
Elastic cloaking theory
,”
Wave Motion
48
(
6
),
525
538
(
2011
).
7.
M. I.
Hussein
,
M. J.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
,
040802
(
2014
).
8.
Y. F.
Wang
,
Y. S.
Wang
, and
V.
Laude
, “
Wave propagation in two-dimensional viscoelastic metamaterials
,”
Phys. Rev. B
92
,
104110
(
2015
).
9.
M. A.
Lewińska
,
V. G.
Kouznetsova
,
J. A. W.
van Dommelen
,
A. O.
Krushynska
, and
M. G. D.
Geers
, “
The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modelling
,”
Int. J. Solids Struct.
126–127
,
163
174
(
2017
).
10.
M. V.
Barnhart
,
X.
Xu
,
Y.
Chen
,
S.
Zhang
,
J.
Song
, and
G.
Huang
, “
Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation
,”
J. Sound Vib.
438
,
1
12
(
2019
).
11.
S.
Krödel
,
N.
Thomé
, and
C.
Daraio
, “
Wide band-gap seismic metastructures
,”
Extreme Mech. Lett.
4
,
111
117
(
2015
).
12.
H.
Meng
,
D.
Chronopoulos
,
A. T.
Fabro
,
W.
Elmadih
, and
I.
Maskery
, “
Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation
,”
J. Sound Vib.
465
,
115005
(
2020
).
13.
A.
Colombi
,
D.
Colquitt
,
P.
Roux
,
S.
Guenneau
, and
R. V.
Craster
, “
A seismic metamaterial: The resonant metawedge
,”
Sci. Rep.
6
,
27717
(
2016
).
14.
P.
Celli
,
B.
Yousefzadeh
,
C.
Daraio
, and
S.
Gonella
, “
Bandgap widening by disorder in rainbow metamaterials
,”
Appl. Phys. Lett.
114
(
9
),
091903
(
2019
).
15.
K. T.
Tan
,
H. H.
Huang
, and
C. T.
Sun
, “
Optimizing the band gap of effective mass negativity in acoustic metamaterials
,”
Appl. Phys. Lett.
101
(
24
),
241902
(
2012
).
16.
C.
Liu
and
C.
Reina
, “
Broadband locally resonant metamaterials with graded hierarchical architecture
,”
J. Appl. Phys.
123
(
9
),
095108
(
2018
).
17.
P.
Wang
,
F.
Casadei
,
S.
Shan
,
J. C.
Weaver
, and
K.
Bertoldi
, “
Harnessing buckling to design tunable locally resonant acoustic metamaterials
,”
Phys. Rev. Lett.
113
,
014301
(
2014
).
18.
D. M.
Kochmann
and
K.
Bertoldi
, “
Exploiting microstructural instabilities in solids and structures: From metamaterials to structural transitions
,”
Appl. Mech. Rev.
69
(
5
),
050801
(
2017
).
19.
R.
Zhu
,
Y. Y.
Chen
,
M. V.
Barnhart
,
G. K.
Hu
,
C. T.
Sun
, and
G.
Huang
, “
Experimental study of an adaptive elastic metamaterial controlled by electric circuits
,”
Appl. Phys. Lett.
108
(
1
),
011905
(
2016
).
20.
L.
D’Alessandro
,
E.
Belloni
,
R.
Ardito
,
A.
Corigliano
, and
F.
Braghin
, “
Modeling and experimental verification of an ultra-wide bandgap in 3d phononic crystal
,”
Appl. Phys. Lett.
109
(
22
),
221907
(
2016
).
21.
Y.
Tian
,
J. H.
Wu
,
H.
Li
,
C.
Gu
,
Z.
Yang
,
Z.
Zhao
, and
K.
Lu
, “
Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators
,”
J. Phys. D: Appl. Phys.
52
(
39
),
395301
(
2019
).
22.
L.
D’Alessandro
,
E.
Belloni
,
G.
D’Alo
,
L.
Daniel
,
R.
Ardito
,
A.
Corigliano
, and
F.
Braghin
, “Modelling and experimental verification of a single phase three-dimensional lightweight locally resonant elastic metamaterial with complete low frequency bandgap,” in 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials) (IEEE, 2017), pp. 70–72.
23.
Q.
Zhang
,
K.
Zhang
, and
G.
Hu
, “
Tunable fluid-solid metamaterials for manipulation of elastic wave propagation in broad frequency range
,”
Appl. Phys. Lett.
112
(
22
),
221906
(
2018
).
24.
See www.comsol.com for COMSOL Multiphysics® v5.4, COMSOL AB, Stockholm, Sweden.
25.
J.
Chung
and
G. M.
Hulbert
, “
A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-method
,”
J. Appl. Mech.
60
(
2
),
371
375
(
1993
).
26.
R.
Christensen
,
Theory of Viscoelasticity: An Introduction
(
Elsevier
,
2012
).
27.
V. M.
Kulik
,
A. V.
Boiko
,
S. P.
Bardakhanov
,
H.
Park
,
H. H.
Chun
, and
I.
Lee
, “
Viscoelastic properties of silicone rubber with admixture of SiO2 nanoparticles
,”
Mater. Sci. Eng. A
528
(
18
),
5729
5732
(
2011
).
28.
M.
Mate
and
R. W.
Carpick
,
Tribology on the Small Scale: A Modern Textbook on Friction, Lubrication, and Wear
(
Oxford University Press
,
2019
).
29.
V.
Laude
, Phononic Srystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves, De Gruyter Studies in Mathematical Physics Vol. 26 (De Gruyter, Berlin, 2015).
30.
O. R.
Bilal
and
M. I.
Hussein
, “
Trampoline metamaterial: Local resonance enhancement by springboards
,”
Appl. Phys. Lett.
103
(
11
),
111901
(
2013
).
31.
O. R.
Bilal
,
A.
Foehr
, and
C.
Daraio
, “
Observation of trampoline phenomena in 3D-printed metamaterial plates
,”
Extreme Mech. Lett.
15
,
103
107
(
2017
).
32.
Muhammad
and
C. W.
Lim
, “
Dissipative multiresonant pillared and trampoline metamaterials with amplified local resonance bandgaps and broadband vibration attenuation
,”
J. Vib. Acoust.
142
(
6
),
061012
(
2020
).
33.
W.
Wang
,
B.
Bonello
,
B.
Djafari-Rouhani
,
Y.
Pennec
, and
J.
Zhao
, “
Elastic stubbed metamaterial plate with torsional resonances
,”
Ultrasonics
106
,
106142
(
2020
).
34.
K. H.
Matlack
,
A.
Bauhofer
,
S.
Krödel
,
A.
Palermo
, and
C.
Daraio
, “
Composite 3D-printed metastructures for low-frequency and broadband vibration absorption
,”
Proc. Nat. Acad. Sci. U.S.A.
113
(
30
),
8386
8390
(
2016
).
35.
S.
Li
,
Y.
Dou
,
T.
Chen
,
Z.
Wan
,
J.
Huang
,
B.
Li
, and
F.
Zhang
, “
Evidence for complete low-frequency vibration band gaps in a thick elastic steel metamaterial plate
,”
Mod. Phys. Lett. B
33
(
04
),
1950038
(
2019
).

Supplementary Material

You do not currently have access to this content.