Since the inception of the atomic force microscope (AFM), dynamic methods (dynamic atomic force microscopy) have been very fruitful by establishing methods to quantify dissipative and conservative forces in the nanoscale and by providing a means to apply gentle forces to the samples with high resolution. Here, we discuss developments that cover over a decade of our work on energy dissipation, phase contrast, and the extraction of relevant material properties from observables. We describe the attempts to recover material properties via one-dimensional amplitude and phase curves from force models and explore the evolution of these methods in terms of force reconstruction, fits of experimental measurements, and the more recent advances in multifrequency AFM. We further discuss open questions and key possible paths to advance the field.

1.
M.
Krieg
,
G.
Fläschner
,
D.
Alsteens
 et al, “
Atomic force microscopy-based mechanobiology
,”
Nat. Rev. Phys.
1
,
41
57
(
2019
).
2.
M.
Li
,
D.
Dang
,
L.
Liu
 et al, “
Atomic force microscopy in characterizing cell mechanics for biomedical applications: A review
,”
IEEE Trans. NanoBioscience
16
,
523
540
(
2017
).
3.
E. T.
Herruzo
,
A. P.
Perrino
, and
R.
Garcia
, “
Fast nanomechanical spectroscopy of soft matter
,”
Nat. Commun.
5
,
3126
(
2014
).
4.
E. T.
Herruzo
and
R.
Garcia
, “
Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus
,”
Beilstein J. Nanotechnol.
3
,
198
206
(
2012
).
5.
F. J.
Giessibl
, “
Forces and frequency shifts in atomic-resolution dynamic-force microscopy
,”
Phys. Rev. B
56
,
16010
(
1997
).
6.
M. E.
Dokukin
,
N. V.
Guz
,
R. M.
Gaikwad
 et al, “
Cell surface as a fractal: Normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale
,”
Phys. Rev. Lett.
107
,
028101
(
2011
).
7.
J. E.
Sader
and
S. P.
Jarvis
, “
Accurate formulas for interaction force and energy in frequency modulation force spectroscopy
,”
Appl. Phys. Lett.
84
,
1801
1803
(
2004
).
8.
D.
Kiracofe
and
A.
Raman
, “
Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: A unifying theory
,”
Nanotechnology
22
,
485502
(
2011
).
9.
D.
Kiracofe
and
A.
Raman
, “
On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids
,”
J. Appl. Phys.
107
,
033506
(
2010
).
10.
M.
Reinstaedtler
,
U.
Rabe
,
V.
Scherer
 et al, “
Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry
,”
Surf. Sci.
532–535
,
1152
1158
(
2003
).
11.
M.
Stark
,
R. W.
Stark
,
W. M.
Heckl
, and
R.
Guckenberger
, “
Inverting dynamic force microscopy: From signals to time-resolved interaction forces
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
8473
8478
(
2002
).
12.
R. W.
Stark
, “
Spectroscopy of higher harmonics in dynamic atomic force microscopy
,”
Nanotechnology
15
,
347
(
2004
).
13.
D.
Forchheimer
,
D.
Platz
,
E. A.
Tholén
, and
D. B.
Haviland
, “
Model-based extraction of material properties in multifrequency atomic force microscopy
,”
Phys. Rev. B
85
,
195449
(
2012
).
14.
T.
Rodriguez
and
R.
Garcia
, “
Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever
,”
Appl. Phys. Lett.
84
,
449
451
(
2004
).
15.
A.
Cartagena
and
A.
Raman
, “
Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods
,”
Biophys. J.
106
,
1033
1043
(
2014
).
16.
J.
Preiner
,
J.
Tang
,
V.
Pastushenko
, and
P.
Hinterdorfer
, “
Higher harmonic atomic force microscopy: Imaging of biological membranes in liquid
,”
Phys. Rev. Lett.
99
,
046102
(
2007
).
17.
R. D.
Turner
,
J.
Kirkham
,
D.
Devine
, and
N. H.
Thomson
, “
Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria
,”
Appl. Phys. Lett.
94
,
043901
(
2009
).
18.
N.
Galvanetto
, “
Practical applications of atomic force microscopy in biomedicine
,”
STEMedicine
1
,
e15
(
2020
).
19.
A.
Keller
and
V.
Linko
, “
Challenges and perspectives of DNA nanostructures in biomedicine
,”
Angew. Chem. Int. Ed.
59
,
15818
15833
(
2020
).
20.
E. R.
Trinidad
,
T. W.
Gribnau
,
P.
Belardinelli
 et al, “
Nonlinear dynamics for estimating the tip radius in atomic force microscopy
,”
Appl. Phys. Lett.
111
,
123105
(
2017
).
21.
M. S.
Mahmoudi
,
A.
Ebrahimian
, and
A.
Bahrami
, “
Higher modes and higher harmonics in the non-contact atomic force microscopy
,”
Int. J. Non-Linear Mech.
110
,
33
43
(
2019
).
22.
R.
Garcia
and
E. T.
Herruzo
, “
The emergence of multifrequency force microscopy
,”
Nat. Nanotechnol.
7
,
217
226
(
2012
).
23.
S.
Santos
,
V.
Barcons
,
A.
Verdaguer
 et al, “
How localized are energy dissipation processes in nanoscale interactions?
,”
Nanotechnology
22
,
345401
(
2011
).
24.
J. P.
Cleveland
,
B.
Anczykowski
,
A. E.
Schmid
, and
V. B.
Elings
, “
Energy dissipation in tapping-mode atomic force microscopy
,”
Appl. Phys. Lett.
72
,
2613
2615
(
1998
).
25.
J.
Tamayo
and
R.
Garcia
, “
Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy
,”
Appl. Phys. Lett.
73
,
2926
2928
(
1998
).
26.
U.
Dürig
, “
Extracting interaction forces and complementary observables in dynamic probe microscopy
,”
Appl. Phys. Lett.
76
,
1203
1205
(
2000
).
27.
R. W.
Stark
and
W. M.
Heckl
, “
Fourier transformed atomic force microscopy: Tapping mode atomic force microscopy beyond the Hookian approximation
,”
Surf. Sci.
457
,
219
228
(
2000
).
28.
J. R.
Lozano
and
R.
Garcia
, “
Theory of multifrequency atomic force microscopy
,”
Phys. Rev. Lett.
100
,
076102
(
2008
).
29.
S.
Kawai
,
T.
Glatzel
,
S.
Koch
 et al, “
Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy
,”
Phys. Rev. Lett.
103
,
220801
(
2009
).
30.
R. W.
Stark
, “
Dynamics of repulsive dual-frequency atomic force microscopy
,”
Appl. Phys. Lett.
94
,
063109
(
2009
).
31.
R.
Proksch
, “
Multi-frequency, repulsive mode amplitude modulated atomic force microscopy
,”
Appl. Phys. Lett.
89
,
113121
(
2006
).
32.
S.
An
,
S. D.
Solares
,
S.
Santos
, and
D.
Ebeling
, “
Energy transfer between eigenmodes in multimodal atomic force microscopy
,”
Nanotechnology
25
,
475701
(
2014
).
33.
S.
Santos
, “
Phase contrast and operation regimes in multifrequency atomic force microscopy
,”
Appl. Phys. Lett.
104
,
143109
(
2014
).
34.
A. F.
Payam
,
J. R.
Ramos
, and
R.
Garcia
, “
Molecular and nanoscale compositional contrast of soft matter in liquid: Interplay between elastic and dissipative interactions
,”
ACS Nano
6
,
4663
4670
(
2012
).
35.
K. L.
Westra
,
A. W.
Mitchell
, and
D. J.
Thomson
, “
Tip artifacts in atomic force microscope imaging of thin film surfaces
,”
J. Appl. Phys.
74
,
3608
3610
(
1993
).
36.
L.
Calabri
,
N.
Pugno
,
C.
Menozzi
, and
S.
Valeri
, “
AFM nanoindentation: Tip shape and tip radius of curvature effect on the hardness measurement
,”
J. Phys. Condens. Matter
20
,
474208
(
2008
).
37.
M.
Köber
,
E.
Sahagún
,
P.
García-Mochales
 et al, “
Nanogeometry matters: Unexpected decrease of capillary adhesion forces with increasing relative humidity
,”
Small
6
,
2725
2730
(
2010
).
38.
A. A.
Vekinis
and
V.
Constantoudis
, “
Quantifying geometric tip-sample effects in AFM measurements using certainty graphs
,”
Micro Nano Eng.
8
,
100067
(
2020
).
39.
B. V.
Derjaguin
,
V. M.
Muller
, and
Y. P.
Toporov
, “
Effect of contact deformations on the adhesion of particles
,”
J. Colloid Interface Sci.
53
,
314
326
(
1975
).
40.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Elsevier Academic Press
,
London
,
2005
).
41.
R.
Garcia
and
A. S.
Paulo
, “
Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy
,”
Phys. Rev. B
60
,
4961
(
1999
).
42.
S.
Santos
,
Dynamic Atomic Force Microscopy and Applications in Biomolecular Imaging
(
University of Leeds
,
Leeds
,
2011
).
43.
S.
Santos
and
N. H.
Thomson
, “
Energy dissipation in a dynamic nanoscale contact
,”
Appl. Phys. Lett.
98
,
013101
013103
(
2011
).
44.
H. C.
Hamaker
, “
The London—van der waals attraction between spherical particles
,”
Physica
4
,
1058
1072
(
1937
).
45.
S.
Santos
,
V.
Barcons
,
H. K.
Christenson
 et al, “
The intrinsic resolution limit in the atomic force microscope: Implications for heights of nano-scale features
,”
PLoS ONE
6
,
e23821
(
2011
).
46.
J.
Font
,
S.
Santos
,
V.
Barcons
 et al, “
Spatial horizons in amplitude and frequency modulation atomic force microscopy
,”
Nanoscale
4
,
2463
2469
(
2012
).
47.
S.
Santos
,
A.
Verdaguer
,
T.
Souier
 et al, “
Measuring the true height of water films on surfaces
,”
Nanotechnology
22
,
465705
(
2011
).
48.
C.-Y.
Lai
,
S.
Santos
, and
M.
Chiesa
, “
Reconstruction of height of sub-nanometer steps with bimodal atomic force microscopy
,”
Nanotechnology
27
,
075701
(
2016
).
49.
S.
Santos
,
M.
Stefancich
,
H.
Hernandez
 et al, “
Hydrophilicity of a single DNA molecule
,”
J. Phys. Chem. C
116
,
2807
2818
(
2012
).
50.
C.-Y.
Lai
,
S.
Perri
,
S.
Santos
 et al, “
Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution
,”
Nanoscale
8
,
9688
9694
(
2016
).
51.
S.
Santos
,
C. A.
Amadei
,
A.
Verdaguer
, and
M.
Chiesa
, “
Size dependent transitions in nanoscale dissipation
,”
J. Phys. Chem. C
117
,
10615
10622
(
2013
).
52.
E. A.
López-Guerra
and
S. D.
Solares
, “
On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: Avoiding mischaracterization across large frequency ranges
,”
Beilstein J. Nanotechnol.
11
,
1409
1418
(
2020
).
53.
T. R.
Rodríguez
and
R.
García
, “
Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models
,”
Appl. Phys. Lett.
80
,
1646
1648
(
2002
).
54.
J. E.
Sader
,
J. A.
Sanelli
,
B. D.
Adamson
 et al, “
Spring constant calibration of atomic force microscope cantilevers of arbitrary shape
,”
Rev. Sci. Instrum.
83
,
103705
(
2012
).
55.
S.
Santos
,
K. R.
Gadelrab
,
A.
Silvernail
 et al, “
Energy dissipation distributions and dissipative atomic processes in amplitude modulation atomic force microscopy
,”
Nanotechnology
23
,
125401
(
2012
).
56.
C. J.
Gómez
and
R.
Garcia
, “
Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM
,”
Ultramicroscopy
110
,
626
633
(
2010
).
57.
J.
Tamayo
and
R.
Garcia
, “
Deformation, contact time, and phase contrast in tapping mode scanning force microscopy
,”
Langmuir
12
,
4430
4435
(
1996
).
58.
K. R.
Gadelrab
,
S.
Santos
,
T.
Souier
, and
M.
Chiesa
, “
Disentangling viscous and hysteretic components in dynamic nanoscale interactions
,”
J. Phys. D
45
,
012002
(
2012
).
59.
K. R.
Gadelrab
,
S.
Santos
, and
M.
Chiesa
, “
Heterogeneous dissipation and size dependencies of dissipative processes in nanoscale interactions
,”
Langmuir
29
,
2200
2206
(
2013
).
60.
R.
Garcia
,
C. J.
Gómez
,
N. F.
Martinez
 et al, “
Identification of nanoscale dissipation processes by dynamic atomic force microscopy
,”
Phys. Rev. Lett.
97
,
016103
(
2006
).
61.
S.
Santos
,
K. R.
Gadelrab
,
T.
Souier
 et al, “
Quantifying dissipative contributions in nanoscale interactions
,”
Nanoscale
4
,
792
800
(
2012
).
62.
S.
Santos
,
K. R.
Gadelrab
,
V.
Barcons
 et al, “
Quantification of dissipation and deformation in ambient atomic force microscopy
,”
New J. Phys.
14
,
073044
(
2012
).
63.
L.
Zitzler
,
S.
Herminghaus
, and
F.
Mugele
, “
Capillary forces in tapping mode atomic force microscopy
,”
Phys. Rev. B
66
,
155436
(
2002
).
64.
E.
Sahagún
,
P.
García-Mochales
,
G. M.
Sacha
, and
J. J.
Sáenz
, “
Energy dissipation due to capillary interactions: Hydrophobicity maps in force microscopy
,”
Phys. Rev. Lett.
98
,
176106
(
2007
).
65.
V.
Barcons
,
A.
Verdaguer
,
J.
Font
 et al, “
Nanoscale capillary interactions in dynamic atomic force microscopy
,”
J. Phys. Chem. C
116
,
7757
7766
(
2012
).
66.
R.
Garcia
and
A.
San Paulo
, “
Dynamics of a vibrating tip near or in intermittent contact with a surface
,”
Phys. Rev. B
61
,
R13381
(
2000
).
67.
S.
Santos
,
V.
Barcons
,
J.
Font
, and
N. H.
Thomson
, “
Bi-stability of amplitude modulation AFM in air: Deterministic and stochastic outcomes for imaging biomolecular systems
,”
Nanotechnology
21
,
225710
(
2010
).
68.
P.
Gleyzes
,
P. K.
Kuo
, and
A. C.
Boccara
, “
Bistable behavior of a vibrating tip near a solid surface
,”
Appl. Phys. Lett.
58
,
2989
2991
(
1991
).
69.
A. J.
Katan
,
M. H.
Van Es
, and
T. H.
Oosterkamp
, “
Quantitative force versus distance measurements in amplitude modulation AFM: A novel force inversion technique
,”
Nanotechnology
20
,
165703
(
2009
).
70.
S.
Hu
and
A.
Raman
, “
Inverting amplitude and phase to reconstruct tip–sample interaction forces in tapping mode atomic force microscopy
,”
Nanotechnology
19
,
375704
(
2008
).
71.
M.
Lee
and
W.
Jhe
, “
General theory of amplitude-modulation atomic force microscopy
,”
Phys. Rev. Lett.
97
,
36104
(
2006
).
72.
F. P.
Amir
,
D.
Martin-Jimenez
, and
R.
Garcia
, “
Force reconstruction from tapping mode force microscopy experiments
,”
Nanotechnology
26
,
185706
(
2015
).
73.
C. A.
Amadei
,
T. C.
Tang
,
M.
Chiesa
, and
S.
Santos
, “
The aging of a surface and the evolution of conservative and dissipative nanoscale interactions
,”
J. Chem. Phys.
139
,
084708
(
2013
).
74.
A. S.
Paulo
and
R.
Garcia
, “
Tip-surface, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy
,”
Phys. Rev. B
64
,
193411
(
2001
).
75.
R.
Proksch
and
D. G.
Yablon
, “
Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy
,”
Appl. Phys. Lett.
100
,
073106
(
2012
).
76.
R.
Proksch
,
M.
Kocun
,
D.
Hurley
 et al, “
Practical loss tangent imaging with amplitude-modulated atomic force microscopy
,”
J. Appl. Phys.
119
,
134901
(
2016
).
77.
T.
Strahlendorff
,
G.
Dai
,
D.
Bergmann
, and
R.
Tutsch
, “
Tip wear and tip breakage in high-speed atomic force microscopes
,”
Ultramicroscopy
201
,
28
37
(
2019
).
78.
S.
Santos
,
V.
Barcons
,
J.
Font
, and
A.
Verdaguer
, “
Unlocking higher harmonics in atomic force microscopy with gentle interactions
,”
Beilstein J. Nanotechnol.
5
,
268
277
(
2014
).
79.
R.
Proksch
,
J.
Bemis
, and
A.
Labuda
, “AM/FM measurements using multiple frequency of atomic force microscopy,”
U.S. Patent 9,453,857
(
2016
), see https://patents.google.com/patent/US9453857B2/en.
80.
J. R.
Ramos
,
J.
Pabijan
,
R.
Garcia
, and
M.
Lekka
, “
The softening of human bladder cancer cells happens at an early stage of the malignancy process
,”
Beilstein J. Nanotechnol.
5
,
447
457
(
2014
).
81.
C.-Y.
Lai
,
T.
Olukan
,
S.
Santos
 et al, “
The power laws of nanoscale forces under ambient conditions
,”
Chem. Commun.
51
,
17619
17622
(
2015
).
82.
S.
Santos
,
L.
Guang
,
T.
Souier
 et al, “
A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy
,”
Rev. Sci. Instrum.
83
,
043707
(
2012
).
83.
S.
Benaglia
,
C. A.
Amo
, and
R.
Garcia
, “
Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM
,”
Nanoscale
11
,
15289
15297
(
2019
).
84.
S. D.
Solares
and
G.
Chawla
, “
Triple-frequency intermittent contact atomic force microscopy characterization: Simultaneous topographical, phase, and frequency shift contrast in ambient air
,”
J. Appl. Phys.
108
,
054901
(
2010
).
85.
C. A.
Amo
, “
Microscopía de Fuerzas Bimodal y no Resonante para Medir Propiedades Físicas y Químicas a Escala Nanométrica
,” In
Instituto de Ciencia de Materiales de Madrid
(
Universidad Autónoma de Madrid
,
2019
).
86.
S.
Santos
,
C.-Y.
Lai
,
T.
Olukan
, and
M.
Chiesa
, “
Multifrequency AFM: From origins to convergence
,”
Nanoscale
9
,
5038
5043
(
2017
).
87.
Z.
Al-Rekabi
and
S.
Contera
, “
Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
2658
(
2018
).
88.
R.
Garcia
, “
Nanomechanical mapping of soft materials with the atomic force microscope: Methods, theory and applications
,”
Chem. Soc. Rev.
49
,
5850
5884
(
2020
).
89.
A.
Liebig
,
P.
Hapala
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip
,”
Sci. Rep.
10
,
14104
(
2020
).
90.
D.
Martin-Jimenez
,
S.
Ahles
,
D.
Mollenhauer
 et al, “
Bond-level imaging of the 3D conformation of adsorbed organic molecules using atomic force microscopy with simultaneous tunneling feedback
,”
Phys. Rev. Lett.
122
,
196101
(
2019
).
91.
N.
Kodera
,
D.
Yamamoto
,
R.
Ishikawa
, and
T.
Ando
, “
Video imaging of walking myosin V by high-speed atomic force microscopy
,”
Nature
468
,
72
76
(
2010
).
92.
Y. M.
Efremov
,
M.
Velay-Lizancos
,
C. J.
Weaver
 et al, “
Anisotropy vs isotropy in living cell indentation with AFM
,”
Sci. Rep.
9
,
5757
(
2019
).
93.
R.
Borgani
and
D. B.
Haviland
, “
Intermodulation spectroscopy as an alternative to pump-probe for the measurement of fast dynamics at the nanometer scale
,”
Rev. Sci. Instrum.
90
,
013705
(
2019
).
You do not currently have access to this content.