The implementation of advanced electronic devices in the fourth industrial revolution era can be achieved with bottom-up grown silicon nanowire (Si-NW) based transistors. Here, we have fabricated reconfigurable Schottky-barrier (SB) thin-film transistors (TFTs) consisting of a parallel array of bottom-up grown single-crystalline Si-NWs and investigated in detail their device length dependent electrical performance and transport mechanism with current–voltage transport-map, key electrical parameters, and numerical simulation. In particular, the effective extension length (Lext_eff) limited significantly the overall conduction behavior of reconfigurable Si-NW SB-TFTs, such as ambipolarity, mobility, threshold voltage, and series resistance. This work provides important information for a better understanding of the physical operation of reconfigurable transistors with SB contacts and further optimization of their performance for implementing practical applications.

1.
A.
Veloso
,
P.
Matagne
,
E.
Simoen
,
B.
Kaczer
,
G.
Eneman
,
H.
Mertens
,
D.
Yakimets
,
B.
Parvais
, and
D.
Mocuta
,
J. Phys.: Condens. Matter
30
(
38
),
384002
(
2018
).
2.
M.
Saremi
,
A.
Afzali-Kusha
, and
S.
Mohammadi
,
Microelectron. Eng.
95
,
74
82
(
2012
).
3.
R. M.
Imenabadi
,
M.
Saremi
, and
W. G.
Vandenberghe
,
IEEE Trans. Electron Devices
64
(
11
),
4752
4758
(
2017
).
4.
R. M. I.
Abadi
and
M.
Saremi
,
J. Electron. Mater.
47
(
2
),
1091
1098
(
2018
).
5.
M.
Badaroglu
, see https://irds.ieee.org/editions/2020 for “More Moore” (
2020
).
6.
W.
Zeng
,
L.
Shu
,
Q.
Li
,
S.
Chen
,
F.
Wang
, and
X. M.
Tao
,
Adv. Mater.
26
(
31
),
5310
5336
(
2014
).
7.
X.
Duan
,
C.
Niu
,
V.
Sahi
,
J.
Chen
,
J. W.
Parce
,
S.
Empedocles
, and
J. L.
Goldman
,
Nature
425
(
6955
),
274
278
(
2003
).
8.
X.
Duan
,
IEEE Trans. Electron Devices
55
(
11
),
3056
3062
(
2008
).
9.
G.
Zheng
,
F.
Patolsky
,
Y.
Cui
,
W. U.
Wang
, and
C. M.
Lieber
,
Nat. Biotechnol.
23
(
10
),
1294
1301
(
2005
).
10.
J.
Appenzeller
,
J.
Knoch
,
M. T.
Bjork
,
H.
Riel
,
H.
Schmid
, and
W.
Riess
,
IEEE Trans. Electron Devices
55
(
11
),
2827
2845
(
2008
).
11.
J.
Knoch
,
M.
Zhang
,
J.
Appenzeller
, and
S.
Mantl
,
Appl. Phys. A
87
(
3
),
351
357
(
2007
).
12.
N.
Dellas
,
C. J.
Schuh
, and
S. E.
Mohney
,
J. Mater. Sci.
47
(
17
),
6189
6205
(
2012
).
13.
J. M.
Larson
and
J. P.
Snyder
,
IEEE Trans. Electron Devices
53
(
5
),
1048
1058
(
2006
).
14.
J.
Zhang
,
M.
De Marchi
,
P.-E.
Gaillardon
, and
G.
De Micheli
,
paper presented at the 2014 IEEE International Electron Devices Meeting
,
2014
.
15.
S.
Pregl
,
F.
Zörgiebel
,
L.
Baraban
,
G.
Cuniberti
,
T.
Mikolajick
,
C.
Richter
and
W.
Weber
,
paper presented at the IEEE 2013 Sensors
,
2013
.
16.
J.
Wang
,
F.
Shen
,
Z.
Wang
,
G.
He
,
J.
Qin
,
N.
Cheng
,
M.
Yao
,
L.
Li
, and
X.
Guo
,
Angew. Chem.
126
(
20
),
5138
5143
(
2014
).
17.
F. M.
Zörgiebel
,
S.
Pregl
,
L.
Römhildt
,
J.
Opitz
,
W.
Weber
,
T.
Mikolajick
,
L.
Baraban
, and
G.
Cuniberti
,
Nano Res.
7
(
2
),
263
271
(
2014
).
18.
D.
Karnaushenko
,
B.
Ibarlucea
,
S.
Lee
,
G.
Lin
,
L.
Baraban
,
S.
Pregl
,
M.
Melzer
,
D.
Makarov
,
W. M.
Weber
, and
T.
Mikolajick
,
Adv. Healthcare Mater.
4
(
10
),
1517
1525
(
2015
).
19.
W. M.
Weber
,
A.
Heinzig
,
J.
Trommer
,
D.
Martin
,
M.
Grube
, and
T.
Mikolajick
,
Solid State Electron.
102
,
12
24
(
2014
).
20.
T.
Mikolajick
,
A.
Heinzig
,
J.
Trommer
,
T.
Baldauf
, and
W. M.
Weber
,
Semicond. Sci. Technol.
32
(
4
),
043001
(
2017
).
21.
A.
Heinzig
,
S.
Slesazeck
,
F.
Kreupl
,
T.
Mikolajick
, and
W. M.
Weber
,
Nano Lett.
12
(
1
),
119
124
(
2012
).
22.
T.
Ernst
,
Science
340
(
6139
),
1414
1415
(
2013
).
23.
C.
Navarro
,
S.
Barraud
,
S.
Martinie
,
J.
Lacord
,
M.-A.
Jaud
, and
M.
Vinet
,
paper presented at the 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)
,
2016
.
24.
S.
Rai
,
J.
Trommer
,
M.
Raitza
,
T.
Mikolajick
,
W. M.
Weber
, and
A.
Kumar
,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
27
(
3
),
560
572
(
2018
).
25.
D.-Y.
Jeon
,
S.
Pregl
,
S. J.
Park
,
L.
Baraban
,
G.
Cuniberti
,
T.
Mikolajick
, and
W. M.
Weber
,
Nano Lett.
15
(
7
),
4578
4584
(
2015
).
26.
D.-Y.
Jeon
,
J.
Zhang
,
J.
Trommer
,
S. J.
Park
,
P.-E.
Gaillardon
,
G.
De Micheli
,
T.
Mikolajick
, and
W. M.
Weber
,
J. Appl. Phys.
121
(
6
),
064504
(
2017
).
27.
S.-J.
Choi
,
C.-J.
Choi
,
J.-Y.
Kim
,
M.
Jang
, and
Y.-K.
Choi
,
IEEE Trans. Electron Devices
58
(
2
),
427
432
(
2011
).
28.
D.-Y.
Jeon
,
T.
Baldau
,
S. J.
Park
,
S.
Pregi
,
L.
Baraban
,
G.
Cuniberti
,
T.
Mikolajick
, and
W. M.
Weber
,
paper presented at the 2017 47th European Solid-State Device Research Conference (ESSDERC)
,
2017
.
29.
D.-Y.
Jeon
,
S. J.
Park
,
M.
Mouis
,
S.
Barraud
,
G.-T.
Kim
, and
G.
Ghibaudo
,
Appl. Phys. Lett.
105
(
26
),
263505
(
2014
).
30.
B.
Szelag
and
F.
Balestra
,
Electron. Lett.
34
(
18
),
1793
1794
(
1998
).
31.
G.
Ghibaudo
,
Electron. Lett.
24
(
9
),
543
545
(
1988
).
32.
S. J.
Park
,
D.-Y.
Jeon
,
L.
MontŔs
,
S.
Barraud
,
G.-T.
Kim
, and
G.
Ghibaudo
,
Microelectron. Eng.
114
,
91
97
(
2014
).
33.
S.
Pregl
,
A.
Heinzig
,
L.
Baraban
,
G.
Cuniberti
,
T.
Mikolajick
, and
W. M.
Weber
,
IEEE Trans. Nanotechnol.
15
(
3
),
549
556
(
2016
).
34.
D.-Y.
Jeon
,
AIP Adv.
10
(
9
),
095118
(
2020
).

Supplementary Material

You do not currently have access to this content.