A study of the one-dimensional molecular chain (MC) with two single-particle degenerate states is presented. We establish connection of the MC with the Ising model with phononic interactions and investigate properties of the model using a transfer-matrix method. The transfer-matrix method offers a promising pathway for simulating such materials properties. The role of degeneracy of states and phononic interaction is made explicit. We analyze regimes of the system and parameters of the occurring crossover. Here, we present exact results for the magnetization per spin, the correlation function, and the effective volume of the system. We demonstrate the possibility of the existence of two peaks in the specific heat capacity thermal behavior.
REFERENCES
1.
R.
Traiche
, M.
Sy
, and K.
Boukheddaden
, “Elastic frustration in 1D spin-crossover chains: Evidence of multi-step transitions and self-organizations of the spin states
,” J. Phys. Chem. C
122
(7
), 4083
–4096
(2018
). 2.
G.
Mohan Kumar
, “Nanotechnology: Nanomaterials and Nanodevices
(Narosa Publishing House
, New Delhi
, 2016
).3.
K.
Senthil Kumar
and M.
Ruben
, “Emerging trends in spin crossover (SCO) based functional materials and devices
,” Coord. Chem. Rev.
346
, 176
–205
(2017
). 4.
H. W.
Huang
, “Asymmetrical Ising model
,” Phys. Rev. B
12
, 216
–218
(1975
). 5.
R.
Harris
, “A study of first- and second-order phase transitions using Monte Carlo simulations in the micro-canonical ensemble
,” Phys. Lett. A
111
(6
), 299
–303
(1985
). 6.
A.
Bousseksou
, J.
Nasser
, J.
Linares
, K.
Boukheddaden
, and F.
Varret
, “Ising-like model for the two-step spin-crossover
,” J. Phys. I
2
(7
), 1381
–1403
(1992
). 7.
K.
Boukheddaden
, J.
Linares
, H.
Spiering
, and F.
Varret
, “One-dimensional ising-like systems: An analytical investigation of the static and dynamic properties, applied to spin-crossover relaxation
,” Eur. Phys. J. B
15
(2
), 317
–326
(2000
). 8.
D.
Schebarchov
, T. P.
Schulze
, and S. C.
Hendy
, “Degenerate Ising model for atomistic simulation of crystal-melt interfaces
,” J. Chem. Phys.
140
(7
), 074704
(2014
). 9.
J.
Sienkiewicz
, K.
Suchecki
, and J. A.
Hołyst
, “Finite size induces crossover temperature in growing spin chains
,” Phys. Rev. E
89
(1
), 012105
(2014
). 10.
S.
Cajahuaringa
and A.
Antonelli
, “Nonequilibrium free energy methods applied to magnetic systems: The degenerate Ising model
,” J. Stat. Phys.
175
(5
), 1006
–1021
(2019
). 11.
J. A.
Nasser
, “Diluted spin conversion compounds behaviours in the atom-phonon coupling model: Case of not too large dilution
,” Eur. Phys. J. B
48
(1
), 19
–27
(2005
). 12.
Y.
Konishi
, H.
Tokoro
, M.
Nishino
, and S.
Miyashita
, “Monte Carlo simulation of pressure-induced phase transitions in spin-crossover materials
,” Phys. Rev. Lett.
100
(6
), 067206
(2008
). 13.
W.
Nicolazzi
, S.
Pillet
, and C.
Lecomte
, “Two-variable anharmonic model for spin-crossover solids: A like-spin domains interpretation
,” Phys. Rev. B
78
, 174401
(2008
). 14.
C.
Enachescu
, L.
Stoleriu
, A.
Stancu
, and A.
Hauser
, “Model for elastic relaxation phenomena in finite 2D hexagonal molecular lattices
,” Phys. Rev. Lett.
102
(25
), 257204
(2009
). 15.
H.-Z.
Ye
, and C.
Sun
, and H.
Jiang
, “Monte-Carlo simulations of spin-crossover phenomena based on a vibronic Ising-like model with realistic parameters
,” Phys. Chem. Chem. Phys.
17
(10
), 6801
–6808
(2015
). 16.
J.
Linares
, H.
Spiering
, and F.
Varret
, “Analytical solution of 1D Ising-like systems modified by weak long range interaction
,” Eur. Phys. J. B
10
(2
), 271
–275
(1999
). 17.
K.
Boukheddaden
, J.
Linares
, R.
Tanasa
, and C.
Chong
, “Theoretical investigations on an axial next nearest neighbour Ising-like model for spin crossover solids: One- and two-step spin transitions
,” J. Phys.: Condens. Matter
19
(10
), 106201
(2007
). 18.
K.
Boukheddaden
, M.
Nishino
, and S.
Miyashita
, “Molecular dynamics and transfer integral investigations of an elastic anharmonic model for phonon-induced spin crossover
,” Phys. Rev. Lett.
100
(17
), 177206
(2008
). 19.
V. A.
Zagrebnov
and B. K.
Fedyanin
, “Spin-phonon interaction in the Ising model
,” Theor. Math. Phys.
10
(1
), 84
–93
(1972
). 20.
S. R.
Salinas
, “On the one-dimensional compressible Ising model
,” J. Phys. A: Math. Nucl. Gen.
6
(10
), 1527
–1533
(1973
). 21.
V. B.
Henriques
and S. R.
Salinas
, “Effective spin Hamiltonians for compressible Ising models
,” J. Phys. C: Solid State Phys.
20
(16
), 2415
–2429
(1987
). 22.
A.
Lehmann-Szweykowska
, M.
Kurzyński
, R.
Wojciechowski
, M.
Wiesner
, and B.
Mróz
, “Anomalous phase transitions in LiCsSO in the compressible hcp Ising model
,” Acta Phys. Pol. A
121
, 1108
–1110
(2012
). 23.
J. A.
Nasser
, K.
Boukheddaden
, and J.
Linares
, “Two-step spin conversion and other effects in the atom-phonon coupling model
,” Eur. Phys. J. B
39
(2
), 219
–227
(2004
). 24.
K.
Boukheddaden
, S.
Miyashita
, and M.
Nishino
, “Elastic interaction among transition metals in one-dimensional spin-crossover solids
,” Phys. Rev. B
75
, 094112
(2007
). 25.
W.
Nicolazzi
, J.
Pavlik
, S.
Bedoui
, G.
Molnár
, and A.
Bousseksou
, “Elastic Ising-like model for the nucleation and domain formation in spin crossover molecular solids
,” Eur. Phys. J. Spec. Top.
222
(5
), 1137
–1159
(2013
). 26.
T. D.
Oke
, F.
Hontinfinde
, and K.
Boukheddaden
, “Bethe lattice approach and relaxation dynamics study of spin-crossover materials
,” Appl. Phys. A
120
(1
), 309
–320
(2015
). 27.
K.
Nebbali
, C. D.
Mekuimemba
, C.
Charles
, S.
Yefsah
, G.
Chastanet
, A. J.
Mota
, E.
Colacio
, and S.
Triki
, “One-dimensional thiocyanato-bridged Fe(II) spin crossover cooperative polymer with unusual FeNS coordination sphere
,” Inorg. Chem.
57
(19
), 12338
–12346
(2018
). 28.
W.
Lan
, F. J.
Valverde-Muñoz
, Y.
Dou
, X.
Hao
, M. C.
Muñoz
, Z.
Zhou
, H.
Liu
, Q.
Liu
, J. A.
Real
, and D.
Zhang
, “A thermal-and light-induced switchable one-dimensional rare loop-like spin crossover coordination polymer
,” Dalton Trans.
48
(45
), 17014
–17021
(2019
). 29.
K. A.
Vinogradova
, D. P.
Pishchur
, V. Y.
Komarov
, L. G.
Lavrenova
, and M. B.
Bushuev
, “Cooperative spin transition in a 1D-polymeric complex [Fe (4-ethyl-1, 2, 4-triazole) 3] SiF6⋅ nHO
,” Inorg. Chim. Acta
506
, 119560
(2020
). 30.
K. V.
Raman
, A. M.
Kamerbeek
, A.
Mukherjee
, N.
Atodiresei
, T. K.
Sen
, P.
Lazić
, V.
Caciuc
, R.
Michel
, D.
Stalke
, S. K.
Mandal
et al., “Interface-engineered templates for molecular spin memory devices
,” Nature
493
(7433
), 509
–513
(2013
). 31.
T.
Matsumoto
, G. N.
Newton
, T.
Shiga
, S.
Hayami
, Y.
Matsui
, H.
Okamoto
, R.
Kumai
, Y.
Murakami
, and H.
Oshio
, “Programmable spin-state switching in a mixed-valence spin-crossover iron grid
,” Nat. Commun.
5
(1
), 3865
(2014
). 32.
K.
Bairagi
, O.
Iasco
, A.
Bellec
, A.
Kartsev
, D.
Li
, J.
Lagoute
, C.
Chacon
, Y.
Girard
, S.
Rousset
, F.
Miserque
et al., “Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer
,” Nat. Commun.
7
(1
), 12212
(2016
). 33.
B. R.
Mullaney
, L.
Goux-Capes
, D. J.
Price
, G.
Chastanet
, J.-F.
Létard
, and C. J.
Kepert
, “Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material
,” Nat. Commun.
8
(1
), 1053
(2017
). 34.
L.
Kipgen
, M.
Bernien
, S.
Ossinger
, F.
Nickel
, A. J.
Britton
, L. M.
Arruda
, H.
Naggert
, C.
Luo
, C.
Lotze
, H.
Ryll
et al., “Evolution of cooperativity in the spin transition of an iron (II) complex on a graphite surface
,” Nat. Commun.
9
(1
), 2984
(2018
). 35.
K.
Ridier
, A.-C.
Bas
, Y.
Zhang
, L.
Routaboul
, L.
Salmon
, G.
Molnár
, C.
Bergaud
, and A.
Bousseksou
, “Unprecedented switching endurance affords for high-resolution surface temperature mapping using a spin-crossover film
,” Nat. Commun.
11
(1
), 3611
(2020
). 36.
A.
Köbke
, F.
Gutzeit
, F.
Röhricht
, A.
Schlimm
, J.
Grunwald
, F.
Tuczek
, M.
Studniarek
, D.
Longo
, F.
Choueikani
, E.
Otero
et al., “Reversible coordination-induced spin-state switching in complexes on metal surfaces
,” Nat. Nanotechnol.
15
(1
), 18
–21
(2020
). 37.
Spin-Crossover Materials: Properties and Applications, edited by M. A. Halcrow (John Wiley & Sons, 2013).
38.
Iu.
Gudyma
, C.
Enachescu
, and A.
Maksymov
, “Kinetics of nonequilibrium transition in spin-crossover compounds,” in Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications (Springer, 2015), pp. 375–401.39.
T.
Yokoyama
, Y.
Murakami
, M.
Kiguchi
, T.
Komatsu
, and N.
Kojima
, “Spin-crossover phase transition of a chain Fe(II) complex studied by x-ray-absorption fine-structure spectroscopy
,” Phys. Rev. B
58
, 14238
–14244
(1998
). 40.
G.
Molnár
, S.
Rat
, L.
Salmon
, W.
Nicolazzi
, and A.
Bousseksou
, “Spin crossover nanomaterials: From fundamental concepts to devices
,” Adv. Mater.
30
(5
), 1703862
(2018
). 41.
E.
Coronado
, “Molecular magnetism: From chemical design to spin control in molecules, materials and devices
,” Nat. Rev. Mater.
5
(2
), 87
–104
(2020
). 42.
S.
Bellucci
and V.
Ohanyan
, “Correlation functions in one-dimensional spin lattices with Ising and Heisenberg bonds
,” Eur. Phys. J. B
86
(11
), 446
(2013
). © 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.