The crucial role played by a crystallization water molecule in the spin crossover (SCO) temperature and its hysteresis is described and discussed in compound [NBu4][Fe(bpp)2][Cr(C6O4Br2)3]⋅2.5H2O (1), where bpp = 2,6-bis(pyrazol-3-yl)pyridine and (C6O4Br2)2− = dianion of the 3,6-dibromo-2,5-dihydroxy-1,4-benzoquinone. The compound has isolated [Fe(bpp)2]2+ cations surrounded by chiral [Cr(C6O4Br2)3]3− anions, NBu4+ cations, and a water molecule H-bonded to one of the non-coordinated N–H groups of one bpp ligand. This complex shows a gradual almost complete two-step spin transition centered at ca. 180 and 100 K with no hysteresis. The loss of the water molecules results in a phase transition from a P21/n phase with only one independent [Fe(bpp)2]2+ cation to a chiral Pn phase with two independent [Fe(bpp)2]2+ cations. Besides, there is an increase in the SCO temperature to 195/202 K with a hysteresis of ca. 7 K. In the dehydrated phase, only one of the two independent [Fe(bpp)2]2+ cations shows the SCO, whereas the second one remains in a high spin configuration at any temperature. In addition, compound 1 exhibits the LIESST (light-induced excited spin-state trapping) effect with a TLIESST of ca. 70 K.

1.
M.
Feng
,
Z.
Ruan
,
Y.
Chen
, and
M.
Tong
, “
Physical stimulus and chemical modulations of bistable molecular magnetic materials
,”
Chem. Commun.
56
,
13702
13718
(
2020
).
2.
M.
Gruber
and
R.
Berndt
, “
Spin-crossover complexes in direct contact with surfaces
,”
Magnetochemistry
6
,
35
(
2020
).
3.
M. A.
Halcrow
, “
Manipulating metal spin states for biomimetic, catalytic and molecular materials chemistry
,”
Dalton Trans.
49
,
15560
15567
(
2020
).
4.
C.
Lefter
,
V.
Davesne
,
L.
Salmon
,
G.
Molnár
,
P.
Demont
,
A.
Rotaru
, and
A.
Bousseksou
, “
Charge transport and electrical properties of spin crossover materials: Towards nanoelectronic and spintronic devices
,”
Magnetochemistry
2
,
18
(
2016
).
5.
A.
Bousseksou
,
G.
Molnár
,
L.
Salmon
, and
W.
Nicolazzi
, “
Molecular spin crossover phenomenon: Recent achievements and prospects
,”
Chem. Soc. Rev.
40
,
3313
3335
(
2011
).
6.
P.
Gutlich
,
Y.
Garcia
, and
H. A.
Goodwin
, “
Spin crossover phenomena in Fe(II) complexes
,”
Chem. Soc. Rev.
29
,
419
427
(
2000
).
7.
M. A.
Halcrow
, “
The effect of ligand design on metal ion spin state-lessons from spin crossover complexes
,”
Crystals
6
,
58
(
2016
).
8.
M. A.
Halcrow
, “
The foundation of modern spin-crossover
,”
Chem. Commun.
49
,
10890
10892
(
2013
).
9.
D. J.
Harding
,
P.
Harding
, and
W.
Phonsri
, “
Spin crossover in iron(III) complexes
,”
Coord. Chem. Rev.
313
,
38
61
(
2016
).
10.
C.
Atmani
,
F.
El Hajj
,
S.
Benmansour
,
M.
Marchivie
,
S.
Triki
,
F.
Conan
,
V.
Patinec
,
H.
Handel
,
G.
Dupouy
, and
C. J.
Gómez-García
, “
Guidelines to design new spin crossover materials
,”
Coord. Chem. Rev.
254
,
1559
1569
(
2010
).
11.
M. A.
Halcrow
, “
Structure:Function relationships in molecular spin-crossover complexes
,”
Chem. Soc. Rev.
40
,
4119
4142
(
2011
).
12.
P.
Gütlich
,
A.
Hauser
, and
H.
Spiering
, “
Thermal and optical switching of iron(II) complexes
,”
Angew. Chem. Int. Ed.
33
,
2024
2054
(
1994
).
13.
M.
Nihei
,
T.
Shiga
,
Y.
Maeda
, and
H.
Oshio
, “
Spin crossover iron(III) complexes
,”
Coord. Chem. Rev.
251
,
2606
2621
(
2007
).
14.
N.
Phukkaphan
,
D. L.
Cruickshank
,
K. S.
Murray
,
W.
Phonsri
,
P.
Harding
, and
D. J.
Harding
, “
Hysteretic spin crossover driven by anion conformational change
,”
Chem. Commun.
53
,
9801
9804
(
2017
).
15.
J. J.
Whittaker
,
P.
Harding
,
J. K.
Clegg
, and
D. J.
Harding
, “
Structural origin of magnetic hysteresis in an iron(III) spin-crossover material
,”
Cryst. Growth Des.
20
,
7006
7011
(
2020
).
16.
A.
Sugahara
,
H.
Kamebuchi
,
A.
Okazawa
,
M.
Enomoto
, and
N.
Kojima
, “
Control of spin-crossover phenomena in one-dimensional triazole-coordinated iron(II) complexes by means of functional counter ions
,”
Inorganics
5
,
50
(
2017
).
17.
D.
Sertphon
,
D. J.
Harding
,
P.
Harding
,
K. S.
Murray
,
B.
Moubaraki
,
J. D.
Cashion
, and
H.
Adams
, “
Anionic tuning of spin crossover in FeIII- quinolylsalicylaldiminate complexes
,”
Eur. J. Inorg. Chem.
2013
,
788
795
.
18.
E.
Milin
,
B.
Benaicha
,
F.
El Hajj
,
V.
Patinec
,
S.
Triki
,
M.
Marchivie
,
C. J.
Gómez-García
, and
S.
Pillet
, “
Magnetic bistability in macrocycle-based FeII spin-crossover complexes: Counter ion and solvent effects
,”
Eur. J. Inorg. Chem.
2016
,
5305
5314
(
2016
).
19.
W.
Phonsri
,
P.
Harding
,
L.
Liu
,
S. G.
Telfer
,
K. S.
Murray
,
B.
Moubaraki
,
T. M.
Ross
,
G. N. L.
Jameson
, and
D. J.
Harding
, “
Solvent modified spin crossover in an iron(iii) complex: Phase changes and an exceptionally wide hysteresis
,”
Chem. Sci.
8
,
3949
3959
(
2017
).
20.
D.
Sertphon
,
P.
Harding
,
K. S.
Murray
,
B.
Moubaraki
,
S. M.
Neville
,
L.
Liu
,
S. G.
Telfer
, and
D. J.
Harding
, “
Solvent effects on the spin crossover properties of iron(II) imidazolylimine complexes
,”
Crystals
9
,
116
(
2019
).
21.
M. d. C.
Giménez-López
,
M.
Clemente-León
, and
C.
Giménez-Sáiz
, “
Unravelling the spin-state of solvated [Fe(bpp)2]2+ spin-crossover complexes: Structure-function relationship
,”
Dalton Trans.
47
,
10453
10462
(
2018
).
22.
M.
Clemente-León
,
E.
Coronado
,
M.
Carmen Giménez-López
,
F. M.
Romero
,
S.
Asthana
,
C.
Desplanches
, and
J.
Létard
, “
Structural, thermal and photomagnetic properties of spin crossover [Fe(bpp)2]2+ salts bearing [Cr(L)(ox)2] anions
,”
Dalton Trans.
,
38
,
8087
8095
(
2009
).
23.
M.
Clemente-León
,
E.
Coronado
,
M. C.
Giménez-López
, and
F. M.
Romero
, “
Structural, thermal, and magnetic study of solvation processes in spin-crossover [Fe(bpp)2][Cr(L)(ox)2]2⋅H2O complexes
,”
Inorg. Chem.
46
,
11266
11276
(
2007
).
24.
M. C.
Giménez-López
,
M.
Clemente-León
,
E.
Coronado
,
F. M.
Romero
,
S.
Shova
, and
J. P.
Tuchagues
, “
Structural transformations and magnetic effects induced by solvent exchange in the spin crossover complex [Fe(Bpp)2] [Cr(bpy)(ox)2]2
,”
Eur. J. Inorg. Chem.
,
2005
,
2783
2787
(
2005
).
25.
D. J.
Harding
,
W.
Phonsri
,
P.
Harding
,
I. A.
Gass
,
K. S.
Murray
,
B.
Moubaraki
,
J. D.
Cashion
,
L.
Liu
, and
S. G.
Telfer
, “
Abrupt spin crossover in an iron(iii) quinolylsalicylaldimine complex: Structural insights and solvent effects
,”
Chem. Commun.
49
,
6340
6342
(
2013
).
26.
C.
Bartual-Murgui
,
C.
Codina
,
O.
Roubeau
, and
G.
Aromí
, “
A sequential method to prepare polymorphs and solvatomorphs of [Fe(1,3-bpp)2](ClO4)2⋅nH2O (n = 0, 1, 2) with varying spin-crossover behaviour
,”
Chem. Eur. J.
22
,
12767
12776
(
2016
).
27.
G.
Dupouy
,
M.
Marchivie
,
S.
Triki
,
J.
Sala-Pala
,
J. Y.
Salaün
,
C. J.
Gómez-García
, and
P.
Guionneau
, “
The key role of the intermolecular (-( interactions in the presence of spin crossover in neutral [Fe(abpt)2A2] complexes (A = terminal monoanion N ligand)
,”
Inorg. Chem.
47
,
8921
8931
(
2008
).
28.
V.
Jornet-Mollá
,
C.
Giménez-Saiz
, and
F. M.
Romero
, “
Synthesis, structure, and photomagnetic properties of a hydrogen-bonded lattice of [Fe(bpp)2]2+ spin-crossover complexes and nicotinate anions
,”
Crystals
8
,
439
(
2018
).
29.
V.
Jornet-Mollá
,
Y.
Duan
,
C.
Giménez-Saiz
,
J. C.
Waerenborgh
, and
F. M.
Romero
, “
Hydrogen-Bonded networks of [fe(bpp)2]2+ spin crossover complexes and dicarboxylate anions: Structural and photomagnetic properties
,”
Dalton Trans.
45
,
17918
17928
(
2016
).
30.
G. A.
Craig
,
O.
Roubeau
, and
G.
Aromí
, “
Spin state switching in 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) based Fe(II) complexes
,”
Coord. Chem. Rev.
269
,
13
31
(
2014
).
31.
S. A.
Barrett
,
C. A.
Kilner
, and
M. A.
Halcrow
, “
Spin-crossover in [Fe(3-bpp)2][BF4]2 in different solvents - a dramatic stabilisation of the low-spin state in water
,”
Dalton Trans.
40
,
12021
12024
(
2011
).
32.
J.
Sánchez Costa
,
S.
Rodríguez-Jiménez
,
G. A.
Craig
,
B.
Barth
,
C. M.
Beavers
,
S. J.
Teat
, and
G.
Aromí
, “
Three-way crystal-to-crystal reversible transformation and controlled spin switching by a nonporous molecular material
,”
J. Am. Chem. Soc.
136
,
3869
3874
(
2014
).
33.
S.
Benmansour
,
P.
Gómez-Claramunt
,
C.
Vallés-García
,
G.
Mínguez Espallargas
, and
C. J.
Gómez García
, “
Key role of the cation in the crystallization of chiral tris(anilato)metalate magnetic anions
,”
Cryst. Growth Des.
16
,
518
526
(
2016
).
34.
S.
Benmansour
,
C.
Vallés-García
,
P.
Gómez-Claramunt
,
G.
Mínguez Espallargas
, and
C. J.
Gómez-García
, “
2D and 3D anilato-based heterometallic M(I)M(III) lattices: The missing link
,”
Inorg. Chem.
54
,
5410
5418
(
2015
).
35.
M.
Atzori
,
S.
Benmansour
,
G.
Mínguez Espallargas
,
M.
Clemente-León
,
A.
Abhervé
,
P.
Gómez-Claramunt
,
E.
Coronado
,
F.
Artizzu
,
E.
Sessini
,
P.
Deplano
,
A.
Serpe
,
M. L.
Mercuri
, and
C. J.
Gómez García
, “
A family of layered chiral porous magnets exhibiting tunable ordering temperatures
,”
Inorg. Chem.
52
,
10031
10040
(
2013
).
36.
M.
Atzori
,
F.
Artizzu
,
E.
Sessini
,
L.
Marchiò
,
D.
Loche
,
A.
Serpe
,
P.
Deplano
,
G.
Concas
,
F.
Pop
,
N.
Avarvari
, and
M.
Laura Mercuri
, “
Halogen-bonding in a new family of tris(haloanilato)metallate(III) magnetic molecular building blocks
,”
Dalton Trans.
43
,
7006
7019
(
2014
).
37.
Y.
Lin
and
S. A.
Lang
, “
Novel two step synthesis of pyrazoles and isoxazoles from aryl methyl ketones
,”
J. Heterocycl. Chem.
14
,
345
347
(
1977
).
38.
H. A.
Goodwin
and
K. H.
Sugiyarto
, “
Lattice trapping of metastable quintet state bis(2,6-bis(pyrazol-3-Yl)pyridine)iron(II) bis(tetrafluoroborate), a spin crossover system, and kinetics of the quintet-singlet transformation
,”
Chem. Phys. Lett.
139
,
470
474
(
1987
).
39.
K. H.
Sugiyarto
and
H. A.
Goodwin
, “
Coordination of pyridine-substituted pyrazoles and their influence on the spin state of iron(II)
,”
Aust. J. Chem.
41
,
1645
1663
(
1988
).
40.
G. M.
Sheldrick
, “
Crystal structure refinement with SHELXL
,”
Acta Crystallogr. C
71
,
3
8
(
2015
).
41.
G. A.
Bain
and
J. F.
Berry
, “
Diamagnetic corrections and Pascal’s constants
,”
J. Chem. Educ.
85
,
532
536
(
2008
).
42.
J.
Létard
, “
Photomagnetism of iron(II) spin crossover complexes—The T(LIESST) approach
,”
J. Mater. Chem.
16
,
2550
2559
(
2006
).
43.
M.
Atzori
,
L.
Marchiò
,
R.
Clérac
,
A.
Serpe
,
P.
Deplano
,
N.
Avarvari
, and
M. L.
Mercuri
, “
Hydrogen-bonded supramolecular architectures based on tris(hydroanilato)metallate(III) (M = Fe, Cr) metallotectons
,”
Cryst. Growth Des.
14
,
5938
5948
(
2014
).
44.
S.
Benmansour
,
E.
Coronado
,
C.
Giménez-Saiz
,
C. J.
Gómez-García
, and
C.
Rößer
, “
Metallic charge-transfer salts of bis(ethylenedithio)-tetrathiafulvalene with paramagnetic tetrachloro-(oxalato)rhenate(IV) and tris(chloranilato)-ferrate(III) anions
,”
Eur. J. Inorg. Chem.
2014
,
3949
3959
(
2014
).
45.
C.
Janiak
, “
A critical account on
π
-
π
stacking in metal complexes with aromatic nitrogen-containing ligands
,”
J. Chem. Soc., Dalton Trans.
2000
,
3885
3896
.
46.
T.
Steiner
, “
The hydrogen bond in the solid state
,”
Angew. Chem. Int. Ed.
41
,
48
76
(
2002
).
47.
P.
Guionneau
,
M.
Marchivie
,
G.
Bravic
,
J. F.
Létard
, and
D.
Chasseau
, “
Structural aspects of spin crossover. example of the [(FeLn)(NCS)2] complexes
,”
Top. Curr. Chem.
234
,
97
128
(
2004
).
48.
E.
Cuza
,
S.
Benmansour
,
N.
Cosquer
,
F.
Conan
,
S.
Pillet
,
C. J.
Gómez-García
, and
S.
Triki
, “
Spin cross-over (SCO) anionic Fe(II) complexes based on the tripodal ligand tris(2-pyridyl)ethoxymethane
,”
Magnetochemistry
6
,
26
(
2020
).
49.
E.
Coronado
,
M. C.
Giménez-López
,
C.
Giménez-Saiz
,
J. M.
Martínez-Agudo
, and
F. M.
Romero
, “
Synthesis, structure and magnetic properties of iron(II), cobalt(II) and nickel(II) complexes of 2,6-bis(pyrazol-3-yl)pyridine and paramagnetic counterions
,”
Polyhedron
22
,
2375
2380
(
2003
).

Supplementary Material

You do not currently have access to this content.