The present paper investigates TiO2 nanoparticle (TiO2-NP) deposition on cotton fabric through a pulsed electrical current in a water/TiO2-NP solution. The experiments used short voltage pulses with an amplitude around 1200 V, an intermediate value between those used in electrophoretic deposition (tens of V) and plasma discharge in liquids (tens of thousands of V). A sequence of pulse trains with five pulses of 1.0 μs delivered electrical energy to the mixture. The electrodes were kept 28 mm apart. An asymmetry appeared in the current waveform when the medium contained TiO2-NPs. The pieces of cotton fabric were characterized using X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). The electrical discharge treatment increased the Ti concentration on the fabric surface by as much as 6% according to XPS analysis. XRD analysis confirmed the XPS results for treated samples, indicating the presence of anatase TiO2. In the FTIR analysis, a shoulder at 800 cm−1 was observed and can be associated with coordination interactions between Ti and the OH groups of glucose. The nanoparticle adhesion was verified by observing the cotton fabric surface through field emission gun scanning electron microscopy after multiple washes. Even after 20 washing cycles, there was a considerable amount of nanoparticles on the sample surface.

1.
D.
Massella
,
M.
Argenziano
,
A.
Ferri
,
J.
Guan
 et al, “
Bio-functional textiles: Combining pharmaceutical nanocarriers with fibrous materials for innovative dermatological therapies
,”
Pharmaceutics
11
(
8
),
403
431
(
2019
).
2.
H. B.
Ahmed
,
H. E.
Emam
,
H. M.
Mashaly
, and
M.
Rehan
, “
Nanosilver leverage on reactive dyeing of cellulose fibers: Color shading, color fastness and biocidal potentials
,”
Carbohydr. Polym.
186
,
310
320
(
2018
).
3.
H. B.
Ahmed
,
N. S.
El-Hawary
, and
H. E.
Emam
, “
Self-assembled AuNPs for ingrain pigmentation of silk fabrics with antibacterial potency
,”
Int. J. Biol. Macromol.
105
,
720
729
(
2017
).
4.
N. A.
Ibrahim
,
A. A.
Nada
,
B. M.
Eid
,
M.
Al-Moghazy
,
A. G.
Hassabo AG
, and
N. Y.
Abou-Zeid
, “
Nano-structured metal oxides: Synthesis, characterization and application for multifunctional cotton fabric
,”
Adv. Nat. Sci.: Nanosci. Nanotechnol.
9
(
3
),
035014
(
2018
).
5.
A.
Abou-Okeil
,
R. A. A.
Eid
, and
A.
Amr
, “
Multi-functional cotton fabrics using nano-technology and environmentally friendly finishing agents
,”
Egypt. J. Chem.
60
,
100
110
(
2017
).
6.
M.
Tausif
,
A.
Jabbar
,
M. S.
Naeem
,
A.
Basit
,
F.
Ahmad
, and
T.
Cassidy
, “
Cotton in the new millennium: Advances, economics, perceptions and problems
,”
Text. Prog.
50
(
1
),
1
66
(
2018
).
7.
N. F.
Attia
,
M.
Moussa
,
A. M. F.
Sheta
,
R.
Taha
, and
H.
Gamal
, “
Effect of different nanoparticles based coating on the performance of textile properties
,”
Prog. Org. Coat.
104
,
72
80
(
2017
).
8.
M.
Rehan
,
H. M.
Mashaly
,
S.
Mowfi
,
A.
Abou El-Kheir
, and
H. E.
Emam
, “
Multi-functional textile design using in-situ Ag NPs incorporation into natural fabric matrix
,”
Dyes Pigm.
118
,
9
17
(
2015
).
9.
M.
Weiße
,
C.
Schmidt
,
A.
Abramova
,
Y.
Voitov
,
M.
Stelter
, and
P.
Braeutigam
, “
Sonochemical coating: Effect of energy input and distance on the functionalization of textiles with TiO2 and ZnO-nanoparticles
,”
Ultrason. Sonochem.
60
,
104801
(
2020
).
10.
M.
Mirkhan
,
M. E.
Yazdanshenas
,
R.
Khajavi
, and
M.
Mirjalili
, “
The effects of TiO2 nanoparticles over time on the physical and mechanical properties of white cotton fabrics and fabrics died with reactive dyes
,”
Orient. J. Chem.
32
(
2
),
1187
1192
(
2016
).
11.
R.
Molina
,
J.
Esquena
, and
P.
Erra
, “
Interfacial processes in textile materials: Relevance to adhesion
,”
J. Adhes. Sci. Technol.
24
(
1
),
7
33
(
2010
).
12.
A.
Villegas-Navarro
,
Y.
Rammhrez-M
,
M. S.
Salvador-S
, and
J. M.
Gallardo
, “
Determination of wastewater LC50 of the different process stages of the textile industry
,”
Ecotoxicol. Environ. Saf.
48
(
1
),
56
61
(
2001
).
13.
B.
Ferrari
and
R.
Moreno
, “
EPD kinetics: A review
,”
J. Eur. Ceram. Soc.
30
(
5
),
1069
1078
(
2010
).
14.
M.
Ammam
, “
Electrophoretic deposition under modulated electric fields: A review
,”
RSC Adv.
2
(
2
),
7633
7646
(
2012
).
15.
A.
Chávez-Valdez
and
A. R.
Boccaccini
, “
Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods
,”
Electrochim. Acta
65
,
70
89
(
2012
).
16.
S.
Cabanas-Polo
and
A. R.
Boccaccini
, “
Electrophoretic deposition of nanoscale TiO2: Technology and applications
,”
J. Eur. Ceram. Soc.
36
(
2
),
265
283
(
2016
).
17.
Y. S.
Joung
and
C. R.
Buie
, “
Antiwetting fabric produced by a combination of layer-by-layer assembly and electrophoretic deposition of hydrophobic nanoparticles
,”
ACS Appl. Mater. Interfaces
7
(
36
),
20100
20110
(
2015
).
18.
G.
Saito
and
T.
Akiyama
, “
Nanomaterial synthesis using plasma generation in liquid
,”
J. Nanomater.
2015
,
21
(
2015
).
19.
N.
Sirotkin
,
A.
Khlyustova
,
V.
Titov
, and
A.
Agafonov
, “
Plasma-assisted synthesis and deposition of molybdenum oxide nanoparticles on polyethylene terephthalate for photocatalytic degradation of rhodamine B
,”
Plasma Process Polym.
17
,
2000012
(
2020
).
20.
K.
Grosse
,
J.
Held
,
M.
Kai
, and
A.
von Keudell
, “
Nanosecond plasmas in water: Ignition, cavitation and plasma parameters
,”
Plasma Sources Sci. Technol.
28
(
8
),
085003
(
2019
).
21.
Ruma
,
P.
Lukes
,
N.
Aoki
,
E.
Spetlikova
,
S. H. R.
Hosseini
,
T.
Sakugawa
, and
H.
Akiyama
, “
Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water
,”
J. Phys. D: Appl. Phys.
46
(
12
),
125202
125212
(
2013
).
22.
W. G.
Graham
and
K. R.
Stalder
, “
Plasmas in liquids and some of their applications in nanoscience
,”
J. Phys. D: Appl. Phys.
44
,
174037
174044
(
2011
).
23.
A.
Meyer-Plath
,
F.
Beckert
,
F. J.
Tölle
,
H.
Sturm
, and
R.
Mülhaupt
, “
Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite
,”
J. Phys. D: Appl. Phys.
49
,
045301
(
2016
).
24.
E. H.
Segundo
,
L. C.
Fontana
,
A. A. C.
Recco
,
J. S.
Scholtz
,
M. A. N.
Vomstein
, and
D.
Becker
, “
Graphene nanosheets obtained through graphite powder exfoliation in pulsed underwater electrical discharge
,”
Mater. Chem. Phys.
217
,
1
4
(
2018
).
25.
P.
Sunka
, “
Pulse electrical discharges in water and their applications
,”
Phys. Plasmas
8
,
2587
(
2001
).
26.
M.
Pelaez
,
N. T.
Nolan
,
S. C.
Pillai
,
M. K.
Seery
,
P.
Falaras
,
A. G.
Kontos
,
P. S. M.
Dunlop
,
J. W. J.
Hamilton
,
J.
Byrne
,
K.
O’Shea
,
M. H.
Entezari
, and
D. D.
Dionysiou
, “
A review on the visible light active titanium dioxide photocatalysts for environmental applications
,”
Appl. Catal., B
125
,
331
349
(
2012
).
27.
M.
Saraswati
,
R. L.
Permadani
, and
A.
Slamet
, “
The innovation of antimicrobial and self-cleaning using Ag/TiO2 nanocomposite coated on cotton fabric for footwear application
,”
IOP Conf. Ser.: Mater. Sci. Eng.
509
,
012091
012097
(
2019
).
28.
J. S.
Scholtz
,
L. C.
Fontana
, and
M.
Mezaroba
, “
Asymmetric bipolar plasma power supply to increase the secondary electrons emission in capacitive coupling plasmas
,”
IEEE Trans. Plasma Sci.
46
,
2999
3007
(
2018
).
29.
F. A.
Stevie
and
C. L.
Donley
, “
Introduction to x-ray photoelectron spectroscopy
,”
J. Vac. Sci. Technol., A
38
,
063204
(
2020
).
30.
R.
Nyholm
,
N.
Martensson
,
A.
Lebuglet
, and
U.
Axelsson
, “
Auger and Coster-Kronig broadening effects in the 2p and 3p photoelectron spectra from the metals 22Ti-30Zn
,”
J. Phys. F: Met. Phys.
11
,
1727
1733
(
1981
).
31.
See https://srdata.nist.gov/xps/main_search_menu.aspx for NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000).
32.
M. C.
Biesinger
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. St. C.
Smart
, “
Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn
,”
Appl. Surf. Sci.
257
,
887
898
(
2010
).
33.
S.
Gao
,
J.
Huang
,
S.
Li
,
H.
Liu
,
F.
Li
,
Y.
Li
, and
G.
Chen
, “
Facile construction of robust fluorine-free superhydrophobic TiO2 @ fabrics with excellent anti-fouling, water-oil separation and UV-protective properties
,”
Mater. Des.
128
,
1
8
(
2017
).
34.
L.
Fras
,
L. -S.
Johansson
,
P.
Stenius
,
J.
Laine
,
K.
Stana-Kleinschek
, and
V.
Ribitsch
, “
Analysis of the oxidation of cellulose fibres by titration and XPS
,”
Colloids Surf., A
260
,
101
108
(
2005
).
35.
L. -S.
Johansson
,
J. M.
Campbell
, and
O. J.
Rojas
, “
Cellulose as the in situ reference for organic XPS. Why? Because it works
,”
Surf. Interface Anal.
52
,
1134
1138
(
2020
).
36.
M. N.
Belgacem
,
G.
Czeremiskin
, and
S.
Sapieha
, “
Surface characterization of cellulose fibres by XPS and inverse gas chromatography
,”
Cellulose
2
,
145
157
(
1995
).
37.
J.
Vasiljević
,
M.
Gorjanc
,
I.
Jerman
,
B.
Tomšič
,
M.
Modic
,
M.
Mozetič
,
B.
Orel
, and
B.
Simončič
, “
Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane
,”
Fibers Polym.
17
,
695
704
(
2016
).
38.
M.
Ishfaq
,
M.
Rizwan Khan
,
M. F.
Bhopal
,
F.
Nasim
,
A.
Ali
,
A. S.
Bhatti
,
I.
Ahmed
,
S.
Bhardwaj
, and
C.
Cepek
, “
1.5 MeV proton irradiation effects on electrical and structural properties of TiO2/n-Si interface
,”
J. Appl. Phys.
115
,
174506
(
2014
).
39.
H. E.
Emam
,
H. B.
Ahmed
,
H. R.
El-Deib
,
F. M. S. E.
El-Dars
, and
R. M.
Abdelhameed
, “
Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric
,”
J. Colloid Interface Sci.
556
,
193
205
(
2019
).
40.
D.
Chen
,
Z.
Mai
,
X.
Liu
,
D.
Ye
,
H.
Zhang
,
X.
Yin
,
Y.
Zhou
,
M.
Liu
, and
W.
Xu
, “
UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2
,”
Cellulose
25
,
3635
3647
(
2018
).
41.
J.
Yu
,
Z.
Pang
,
C.
Zheng
,
T.
Zhou
,
J.
Zhang
,
H.
Zhou
, and
Q.
Wei
, “
Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity
,”
Appl. Surf. Sci.
470
,
84
90
(
2019
).
42.
M. N.
Morshed
,
X.
Shen
,
H.
Deb
,
S. A.
Azad
,
X.
Zhang
, and
R.
Li
, “
Sonochemical fabrication of nanocrystalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance
,”
J. Nat. Fibers
17
(
1
),
41
54
(
2020
).
43.
S. S.
Ugur
,
M.
Sariisik
, and
A. H.
Aktas
, “
The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics
,”
Nanotechnology
21
(
32
),
325603
(
2010
).
44.
A.
Bentis
,
A.
Boukhriss
, and
S.
Boukhriss
, “
Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol-gel method
,”
J. Sol-gel Sci. Technol.
94
,
719
730
(
2020
).
45.
S. R.
Saad
,
N.
Mahmed
,
M. M. A. B.
Abdullah
, and
A. V.
Sandu
, “
Self-cleaning technology in fabric: A review
,”
IOP Conf. Ser.: Mater. Sci. Eng.
133
,
012028
012038
(
2016
).
46.
L.
Xu
,
J.
Deng
,
Y.
Guo
,
W.
Wang
,
R.
Zhang
, and
J.
Yu
, “
Fabrication of super-hydrophobic cotton fabric by low-pressure plasma-enhanced chemical vapor deposition
,”
Text. Res. J.
89
(
10
),
1853
1862
(
2019
).
47.
O. O.
Van der Biest
and
L. J.
Vandeperre
, “
Electrophoretic deposition of materials
,”
Annu. Rev. Mater. Sci.
29
,
327
352
(
1999
).
48.
M. D.
Chadwick
,
J. W.
Goodwin
,
E. J.
Lawson
,
P. D. A.
Mills
, and
B.
Vincent
, “
Surface charge properties of colloidal titanium dioxide in ethylene glycol and water
,”
Colloids Surf., A
203
,
229
236
(
2002
).
49.
L.
Ramirez
,
S. R.
Gentile
,
S.
Zimmermann
, and
S.
Stoll
, “
Behavior of TiO2 and CeO2 nanoparticles and polystyrene nanoplastics in bottled mineral, drinking and Lake Geneva waters. Impact of water hardness and natural organic matter on nanoparticle surface properties and aggregation
,”
Water
11
,
721
(
2019
).
50.
N. V.
Rees
,
Y.-G.
Zhou
, and
R. G.
Compton
, “
Making contact: Charge transfer during particle–electrode collisions
,”
RSC Adv.
2
(
2
),
379
384
(
2012
).
51.
Y.
Lykhach
,
S. M.
Kozlov
,
T.
Skála
,
A.
Tovt
,
V.
Stetsovych
,
N.
Tsud
, and
J.
Libuda
, “
Counting electrons on supported nanoparticles
,”
Nat. Mater.
15
(
3
),
284
288
(
2016
).
52.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
38
(
1972
).
53.
M.
Ni
,
M. K. H.
Leung
,
D. Y. C.
Leung
, and
K.
Sumathy
, “
A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production
,”
Renewable Sustainable Energy Rev.
11
(
3
),
401
425
(
2007
).
54.
J.
Schneider
,
M.
Matsuoka
,
M.
Takeuchi
,
J.
Zhang
,
Y.
Horiuchi
,
M.
Anpo
, and
D. W.
Bahnemann
, “
Understanding TiO2 photocatalysis: Mechanisms and materials
,”
Chem. Rev.
114
(
19
),
9919
9986
(
2014
).
You do not currently have access to this content.