Inorganic electrochromic materials are promising for applications in color-based chromogenic technologies. Limited color control in these materials has, however, hitherto hampered their applications. Here, we show that multicolored nickel oxide (NiO) films can be obtained due to the combined effect of the intrinsic color of NiO and the structural color of the inverse opal structures by tailoring anodic oxide NiO films, exhibiting an absorption tail in the visible region into three-dimensional ordered macroporous inverse opal photonic bandgap structures. Various colors were achieved by the synergistic mechanism of structural and electrochromic coloration, thus realizing a wide spectrum of blue, green, yellow, orange, and brown colors depending on pore size, wall thickness, and viewing angle. Importantly, it is shown that the depth of color can be varied by applying an external potential. The electrochromic coloring of the inverse opal NiO films is found to be very different from the typical optical switching of non-structural NiO films. Thus, our work brings insights into the development of inorganic colored electrochromic materials.

1.
A. E.
Goodling
,
S.
Nagelberg
,
B.
Kaehr
,
C. H.
Meredith
,
S. Ik.
Cheon
,
A. P.
Saunders
,
M.
Kolle
, and
L. D.
Zarzar
, “
Colouration by total internal reflection and interference at microscale concave interfaces
,”
Nature
566
(
7745
),
523
(
2019
).
2.
R. J.
Mortimer
,
D. R.
Rosseinsky
, and
P. M.
Monk
,
Electrochromic Materials and Devices
(
John Wiley & Sons
,
2015
).
3.
Y.
Wang
,
E. L.
Runnerstrom
, and
D. J.
Milliron
, “
Switchable materials for smart windows
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
283
304
(
2016
).
4.
M.
Gugole
,
O.
Olsson
,
K.
Xiong
,
J. C.
Blake
,
J.
Montero Amenedo
,
I.
Bayrak Pehlivan
,
G. A.
Niklasson
, and
A.
Dahlin
, “
High-contrast switching of plasmonic structural colors: Inorganic versus organic electrochromism
,”
ACS Photonics
7
(
7
),
1762
1772
(
2020
).
5.
J.
Lin
,
M.
Lai
,
L.
Dou
,
C. S.
Kley
,
H.
Chen
,
F.
Peng
,
J.
Sun
,
D.
Lu
,
S. A.
Hawks
,
C.
Xie
,
F.
Cui
,
A. P.
Alivisatos
,
D. T.
Limmer
, and
P.
Yang
, “
Thermochromic halide perovskite solar cells
,”
Nat. Mater.
17
(
3
),
261
267
(
2018
).
6.
E. M.
Baba
,
J.
Montero
,
E.
Strugovschikov
,
E.
Özkan Zayim
, and
S.
Karazhanov
, “
Light-induced breathing in photochromic yttrium oxyhydrides
,”
Phys. Rev. Mater.
4
,
025201
(
2020
).
7.
W.
Feng
,
L.
Zou
,
G.
Gao
,
G.
Wu
,
J.
Shen
, and
W.
Li
, “
Gasochromic smart window: Optical and thermal properties, energy simulation and feasibility analysis
,”
Sol. Energy Mater. Sol. Cells
144
,
316
323
(
2016
).
8.
C. G.
Granqvist
,
M. A.
Arvizu
,
İ.
Bayrak Pehlivan
,
H.-Y.
Qu
,
R.-T.
Wen
, and
G. A.
Niklasson
, “
Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review
,”
Electrochim. Acta
259
,
1170
1182
(
2018
).
9.
C. G.
Granqvist
, “
Electrochromics for smart windows: Oxide-based thin films and devices
,”
Thin Solid Films
564
,
1
38
(
2014
).
10.
P.
Yang
,
P.
Sun
, and
W.
Mai
, “
Electrochromic energy storage devices
,”
Mater. Today
19
(
7
),
394
402
(
2016
).
11.
G.
Cai
,
J.
Wang
, and
P. S.
Lee
, “
Next-generation multifunctional electrochromic devices
,”
Acc. Chem. Res.
49
(
8
),
1469
1476
(
2016
).
12.
J.
Kim
,
G. K.
Ong
,
Y.
Wang
,
G.
LeBlanc
,
T. E.
Williams
,
T. M.
Mattox
,
B. A.
Helms
, and
D. J.
Milliron
, “
Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance
,”
Nano Lett.
15
(
8
),
5574
5579
(
2015
).
13.
Y.
Naijo
,
T.
Yashiro
,
H.
Takahashi
,
K.
Fujimura
,
S.
Hirano
,
T.
Sagisaka
,
S.
Yamamoto
,
D.
Goto
,
K.
Yutani
,
Y.
Okada
,
K.
Tsuji
,
S.
Kim
,
M.
Inoue
,
K.
Takauji
,
T.
Horiuchi
, “
Electrochromic display device, and producing method and driving method thereof
,” U.S. Patent, Publication No. US20160005375A1 (2016-01-07).
14.
M. A.
Arvizu
,
H.-Y.
Qu
,
U.
Cindemir
,
Z.
Qiu
,
E. A.
Rojas-González
,
D.
Primetzhofer
,
C. G.
Granqvist
,
L.
Österlund
, and
G. A.
Niklasson
, “
Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment
,”
J. Mater. Chem. A
7
(
6
),
2908
2918
(
2019
).
15.
H.-Y.
Qu
,
D.
Primetzhofer
,
M. A.
Arvizu
,
Z.
Qiu
,
U.
Cindemir
,
C. G.
Granqvist
, and
G. A.
Niklasson
, “
Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films
,”
ACS Appl. Mater. Interfaces
9
(
49
),
42420
42424
(
2017
).
16.
Q.
Guo
,
X.
Zhao
,
Z.
Li
,
B.
Wang
,
D.
Wang
, and
G.
Nie
, “
High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters
,”
ACS Appl. Energy Mater.
3
(
3
),
2727
2736
(
2020
).
17.
R.
Futsch
,
I.
Mjejri
,
H.
Rakotozafy
, and
A.
Rougier
, “
PEDOT:PSS-V2O5 hybrid for color adjustment in electrochromic systems
,”
Front. Mater.
7
,
78
(
2020
).
18.
H.
Yu
,
S.
Shao
,
L.
Yan
,
H.
Meng
,
Y.
He
,
C.
Yao
,
P.
Xu
,
X.
Zhang
,
W.
Hu
, and
W.
Huang
, “
Side-chain engineering of green color electrochromic polymer materials: Toward adaptive camouflage application
,”
J. Mater. Chem. C
4
(
12
),
2269
2273
(
2016
).
19.
O. D.
Velev
,
T. A.
Jede
,
R. F.
Lobo
, and
A. M.
Lenhoff
, “
Porous silica via colloidal crystallization
,”
Nature
389
(
6650
),
447
448
(
1997
).
20.
Y.
Fu
,
C. A.
Tippets
,
E. U.
Donev
, and
R.
Lopez
, “
Structural colors: From natural to artificial systems
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
8
(
5
),
758
775
(
2016
).
21.
J.
Sun
,
B.
Bhushan
, and
J.
Tong
, “
Structural coloration in nature
,”
RSC Adv.
3
(
35
),
14862
14889
(
2013
).
22.
M.
Srinivasarao
, “
Nano-optics in the biological world: Beetles, butterflies, birds, and moths
,”
Chem. Rev.
99
(
7
),
1935
1962
(
1999
).
23.
S.-L.
Kuai
,
G.
Bader
, and
P. V.
Ashrit
, “
Tunable electrochromic photonic crystals
,”
Appl. Phys. Lett.
86
(
22
),
221110
(
2005
).
24.
L.
Liu
,
S. K.
Karuturi
,
L. T.
Su
,
Q.
Wang
, and
A. I. Y.
Tok
, “
Electrochromic photonic crystal displays with versatile color tunability
,”
Electrochem. Commun.
13
(
11
),
1163
1165
(
2011
).
25.
L.
Xiao
,
Y.
Lv
,
J.
Lin
,
Y.
Hu
,
W.
Dong
,
X.
Guo
,
Y.
Fan
,
N.
Zhang
,
J.
Zhao
,
Y.
Wang
, and
X.
Liu
, “
WO3-based electrochromic distributed Bragg reflector: Toward electrically tunable microcavity luminescent device
,”
Adv. Opt. Mater.
6
(
1
),
1700791
(
2018
).
26.
Y. F.
Yuan
,
X. H.
Xia
,
J. B.
Wu
,
Y. B.
Chen
,
J. L.
Yang
, and
S. Y.
Guo
, “
Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition
,”
Electrochim. Acta
56
(
3
),
1208
1212
(
2011
).
27.
J. S.
King
,
E.
Graugnard
, and
C. J.
Summers
, “
TiO2 inverse opals fabricated using low-temperature atomic layer deposition
,”
Adv. Mater.
17
(
8
),
1010
1013
(
2005
).
28.
D. M.
Lebrun
and
L.
Österlund
, “
Demonstration of slow photon chemistry on multilayer inverse opals
,”
Sci. Adv. Mater.
9
(
11
),
1947
1952
(
2017
).
29.
X.
Du
and
J.
He
, “
Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization
,”
J. Appl. Polym. Sci.
108
(
3
),
1755
1760
(
2008
).
30.
Y. G.
Wu
,
G. M.
Wu
,
X. Y.
Ni
,
Z.
Zhou
,
H. Q.
Zhang
, and
X.
Wu
, “
Electrochromic characteristics of nickel oxide film in Li+ containing electrolyte
,”
J. Inorg. Mater.
14
(
2
),
257
263
(
1999
) (in Chinese).
31.
S. G.
Romanov
,
T.
Maka
,
C. S.
Torres
,
M.
Müller
,
R.
Zentel
,
D.
Cassagne
,
J.
Manzanares-Martinez
, and
C.
Jouanin
, “
Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals
,”
Phys. Rev. E
63
(
5
),
056603
(
2001
).
32.
J. F.
Galisteo-López
and
C.
López
, “
High-energy optical response of artificial opals
,”
Phys. Rev. B
70
(
3
),
035108
(
2004
).
33.
R. V.
Nair
and
R.
Vijaya
, “
Observation of higher-order diffraction features in self-assembled photonic crystals
,”
Phys. Rev. A
76
(
5
),
053805
(
2007
).
34.
A.
Kawamura
,
M.
Kohri
,
G.
Morimoto
,
Y.
Nannichi
,
T.
Taniguchi
, and
K.
Kishikawa
, “
Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors
,”
Sci. Rep.
6
,
33984
(
2016
).
35.
W.
Visscher
and
E.
Barendrecht
, “
Investigation of thin-film α-and β-Ni(OH)2 electrodes in alkaline solutions
,”
J. Electroanal. Chem. Interfacial Electrochem.
154
(
1–2
),
69
80
(
1983
).
36.
M. A.
Vidales-Hurtado
and
A.
Mendoza-Galvan
, “
Optical and structural characterization of nickel oxide-based thin films obtained by chemical bath deposition
,”
Mater. Chem. Phys.
107
(
1
),
33
38
(
2008
).
37.
V. A.
Tolmachev
,
T. S.
Perova
,
J. A.
Pilyugina
, and
R. A.
Moore
, “
Experimental evidence of photonic band gap extension for disordered 1D photonic crystals based on Si
,”
Opt. Commun.
259
(
1
),
104
106
(
2006
).
38.
M.
Mihelčič
,
A.
Šurca Vuk
,
I.
Jerman
,
B.
Orel
,
F.
Švegl
,
H.
Moulki
,
C.
Faure
,
G.
Campet
, and
A.
Rougier
, “
Comparison of electrochromic properties of Ni1−xO in lithium and lithium-free aprotic electrolytes: From Ni1−xO pigment coatings to flexible electrochromic devices
,”
Sol. Energy Mater. Sol. Cells
120
,
116
130
(
2014
).
39.
H.-Y.
Qu
,
D.
Primetzhofer
,
Z.
Qiu
,
L.
Österlund
,
C. G.
Granqvist
, and
G. A.
Niklasson
, “
Cation-/anion-based electrochemical degradation and rejuvenation of electrochromic nickel oxide thin films
,”
ChemElectroChem
5
(
22
),
3548
3556
(
2018
).
40.
R.-T.
Wen
,
C. G.
Granqvist
, and
G. A.
Niklasson
, “
Anodic electrochromism for energy-efficient windows: Cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films
,”
Adv. Funct. Mater.
25
(
22
),
3359
3370
(
2015
).
41.
C.-C.
Jaing
,
C.-J.
Tang
,
C.-C.
Chan
,
K.-H.
Lee
,
C.-C.
Kuo
,
H.-C.
Chen
, and
C.-C.
Lee
, “
Optical constants of electrochromic films and contrast ratio of reflective electrochromic devices
,”
Appl. Opt.
53
,
A154
A158
(
2014
).

Supplementary Material

You do not currently have access to this content.