The alteration of electronic properties in chemically modified graphene can be utilized for chemical and biosensing applications. Thus, it is essential to understand how the alteration of density of states and conductance spectra of functionalized zigzag and armchair graphene nanoribbon (GNR) affects its sensitivity. In this aspect, the current–voltage characteristics of GNR based sensors are modeled using the non-equilibrium Green's function method. Our findings show that the presence of chemical moiety at one edge of the zigzag GNR structure opens the bandgap that reduces the current conduction and enhances the sensitivity for detection. However, double edge functionalization restores the semi-metallic character of the zigzag ribbon that reduces the sensitivity. Both single and double edge atomic substitution in armchair ribbon makes it n-type, which shows the alteration in current conduction for detecting the presence of the chemical species. We further found that increasing the width of the ribbon decreases the device sensitivity while it increases for the double edge substituted zigzag structure. The study thus provides essential information and insights into utilizing and operating different edge structures of graphene based sensors for effective detection of chemical and biomolecular species.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
2.
L.
Xu
,
Y.
Wen
,
S.
Pandit
,
V. R.
Mokkapati
,
I.
Mijakovic
,
Y.
Li
,
M.
Ding
,
S.
Ren
,
W.
Li
, and
G.
Liu
, “
Graphene-based biosensors for the detection of prostate cancer protein biomarkers: A review
,”
BMC Chem.
13
,
112
(
2019
).
3.
F.
Yavari
and
N.
Koratkar
, “
Graphene-based chemical sensors
,”
J. Phys. Chem. Lett.
3
,
1746
1753
(
2012
).
4.
T. F.
Zhang
,
Z. P.
Li
,
J. Z.
Wang
,
W. Y.
Kong
,
G. A.
Wu
,
Y. Z.
Zheng
,
Y. W.
Zhao
,
E. X.
Yao
,
N. X.
Zhuang
, and
L. B.
Luo
, “
Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction
,”
Sci. Rep.
6
,
38569
(
2016
).
5.
T.
Mahmoudi
,
Y.
Wang
, and
Y. B.
Hahn
, “
Graphene and its derivatives for solar cells application
,”
Nano Energy
47
,
51
65
(
2018
).
6.
S. J.
Han
,
K. A.
Jenkins
,
A.
Valdes Garcia
,
A. D.
Franklin
,
A. A.
Bol
, and
W.
Haensch
, “
High-frequency graphene voltage amplifier
,”
Nano Lett.
11
,
3690
3693
(
2011
).
7.
D. W.
Boukhvalov
and
M. I.
Katsnelson
, “
Chemical functionalization of graphene
,”
J. Phys.: Condens. Matter
21
,
344205
(
2009
).
8.
Y. T.
Kim
,
S.
Lee
,
S.
Park
, and
C. Y.
Lee
, “
Graphene chemiresistors modified with functionalized triphenylene for highly sensitive and selective detection of dimethyl methylphosphonate
,”
RSC Adv.
9
,
33976
33980
(
2019
).
9.
B.
Li
,
H.
Tan
,
S.
Anastasova
,
M.
Power
,
F.
Seichepine
, and
G. Z.
Yang
, “
A bio-inspired 3D micro-structure for graphene-based bacteria sensing
,”
Biosens. Bioelectron.
123
,
77
84
(
2019
).
10.
D.
Cheng
,
L.
Yang
,
X.
Li
,
J.
Zhou
,
Q.
Chen
,
S.
Yan
,
N.
Li
,
M.
Chu
,
Y.
Dong
,
Z.
Xie
, and
C.
Zhang
, “
An electrochemical DNA sensing platform using carboxyl functionalized graphene as the electrode modified material
,”
J. Electrochem. Soc.
164
,
H345
(
2017
).
11.
W.
Tian
,
X.
Liu
, and
W.
Yu
, “
Research progress of gas sensor based on graphene and its derivatives: A review
,”
Appl. Sci.
8
,
1118
(
2018
).
12.
T.
Wang
,
D.
Huang
,
Z.
Yang
,
S.
Xu
,
G.
He
,
X.
Li
,
N.
Hu
,
G.
Yin
,
D.
He
, and
L.
Zhang
, “
A review on graphene-based gas/vapor sensors with unique properties and potential applications
,”
Nano-Micro Lett.
8
,
95
119
(
2016
).
13.
X.
Tang
,
N.
Mager
,
B.
Vanhorenbeke
,
S.
Hermans
, and
J. P.
Raskin
, “
Defect-free functionalized graphene sensor for formaldehyde detection
,”
Nanotechnology
28
,
055501
(
2017
).
14.
S. G.
Chatterjee
,
S.
Chatterjee
,
A. K.
Ray
, and
A. K.
Chakraborty
, “
Graphene–metal oxide nanohybrids for toxic gas sensor: A review
,”
Sens. Actuators, B
221
,
1170
1181
(
2015
).
15.
J. M.
Englert
,
C.
Dotzer
,
G.
Yang
,
M.
Schmid
,
C.
Papp
,
J. M.
Gottfried
,
H. P.
Steinrück
,
E.
Spiecker
,
F.
Hauke
, and
A.
Hirsch
, “
Covalent bulk functionalization of graphene
,”
Nat. Chem.
3
,
279
286
(
2011
).
16.
M.
He
and
T. M.
Swager
, “
Covalent functionalization of carbon nanomaterials with iodonium salts
,”
Chem. Mater.
28
,
8542
8549
(
2016
).
17.
D.
Yu
,
Y.
Yang
,
M.
Durstock
,
J. B.
Baek
, and
L.
Dai
, “
Soluble P3HT-grafted graphene for efficient bilayer - heterojunction photovoltaic devices
,”
ACS Nano
4
,
5633
5640
(
2010
).
18.
J.
Xu
,
J.
Shui
,
J.
Wang
,
M.
Wang
,
H. K.
Liu
,
S. X.
Dou
,
I. Y.
Jeon
,
J. M.
Seo
,
J. B.
Baek
, and
L.
Dai
, “
Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries
,”
ACS Nano
8
,
10920
10930
(
2014
).
19.
K. Z.
Milowska
and
J. A.
Majewski
, “
Graphene-based sensors: Theoretical study
,”
J. Phys. Chem. C
118
,
17395
17401
(
2014
).
20.
I. Y.
Sahalianov
,
T. M.
Radchenko
,
V. A.
Tatarenko
,
G.
Cuniberti
, and
Y. I.
Prylutskyy
, “
Straintronics in graphene: Extra large electronic band gap induced by tensile and shear strains
,”
J. Appl. Phys.
126
,
054302
(
2019
).
21.
F.
Cervantes-Sodi
,
G.
Csányi
,
S.
Piscanec
, and
A. C.
Ferrari
, “
Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties
,”
Phys. Rev. B
77
,
165427
(
2008
).
22.
F.
Xie
,
A.
Peukart
,
T.
Bender
,
C.
Obermiar
,
F.
Wertz
,
F.
Schmieder
, and
T.
Schimmel
, “
Quasi-solid-state single atom transistor
,”
Adv. Mater.
30
,
1801225
(
2018
).
23.
M.
Fuechsle
,
J. A.
Miwa
,
S.
Mahapatra
,
H.
Ryu
,
S.
Lee
,
O.
Warschkow
,
L. C.
Hollenberg
,
G.
Klimeck
, and
M. Y.
Simmons
, “
A single atom transistor
,”
Nat. Nanotechnol.
7
,
242
246
(
2012
).
24.
B.
Weber
,
S.
Mahapatra
,
H.
Ryu
,
S.
Lee
,
A.
Fuhrer
,
T. C. G.
Reusch
,
D. L.
Thompson
,
W. C. T.
Lee
,
G.
Klimeck
,
L. C. L.
Hollenberg
, and
M. Y.
Simmons
, “
Ohm’s law survives to the atomic scale
,”
Science
335
,
64
67
(
2012
).
25.
S.
Datta
,
Lessons from Nanoelectronics: A New Perspective on Transport
(
World Scientific Publishing
,
Singapore
,
2012
), Vol. 1.
26.
G.
Thriveni
and
K.
Ghosh
, “
Theoretical analysis and optimization of high k dielectric layers for designing high performance and low power dissipation nanoscale double-gate MOSFETs
,”
J. Comput. Electron.
18
,
924
940
(
2019
).
27.
G.
Thriveni
and
K.
Ghosh
, “
Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers
,”
Mater. Res. Express
6
,
085062
(
2019
).
28.
M.
Baraket
,
R.
Stine
,
W. K.
Lee
,
J. T.
Robinson
,
C. R.
Tamanaha
,
P. E.
Sheehan
, and
S. G.
Walton
, “
Aminated graphene for DNA attachment produced via plasma functionalization
,”
Appl. Phys. Lett.
100
,
233123
(
2012
).
29.
P.
Wagner
,
C. P.
Ewels
,
V. V.
Ivanovskaya
,
P. R.
Briddon
,
A.
Pateau
, and
B.
Humbert
, “
Ripple edge engineering of graphene nanoribbons
,”
Phys. Rev. B
84
,
134110
(
2011
).
30.
N.
Rosenkranz
,
C.
Till
,
C.
Thomsen
, and
J.
Maultzsch
, “
Ab initio calculations of edge-functionalized armchair graphene nanoribbons: Structural, electronic, and vibrational effects
,”
Phys. Rev. B
84
,
195438
(
2011
).
31.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
,”
Phys. Rev. B
54
,
17954
(
1996
).
32.
Y.
Niimi
,
T.
Matsui
,
H.
Kambara
,
K.
Tagami
,
M.
Tsukada
, and
H.
Fukuyama
, “
Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges
,”
Phys. Rev. B
73
,
085421
(
2006
).
33.
Y.-H.
Zhang
,
Y.-B.
Chen
,
C.-H.
Liu
,
J.
Zeng
,
H.-L.
Zhang
, and
Y.
Peng
, “
Improving gas sensing properties of graphene by introducing dopant and defect: A first-principles study
,”
Nanotechnol.
20
,
185504
(
2009
).
34.
N.
Merino-Diez
,
A.
Garcia-Lekue
,
E.
Carbonell-Sanroma
,
J.
Li
,
M.
Corso
,
L.
Colazzo
,
F.
Sedona
,
D.
Sanchez-Portal
,
J. I.
Pascual
, and
D. G. D.
Oteyza
, “
Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111)
,”
ACS Nano
11
,
11661
11668
(
2017
).
35.
M. Y.
Han
,
B.
Özyilmaz
,
Y.
Zhang
, and
P.
Kim
, “
Energy band-gap engineering of graphene nanoribbons
,”
Phys. Rev. Lett.
98
,
206805
(
2007
).
36.
B.
Özyilmaz
,
P.
Jarillo-Herrero
,
D.
Efetov
, and
P.
Kim
, “
Electronic transport in locally gated graphene nanoconstrictions
,”
Appl. Phys. Lett.
91
,
192107
(
2007
).
37.
K. A.
Ritter
and
J. W.
Lyding
, “
The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
,”
Nat. Mater.
8
,
235
242
(
2009
).
You do not currently have access to this content.