WTe2 is a material with rich topological properties: it is a 2D topological insulator as a monolayer and a Weyl-semimetal and higher-order topological insulator in a bulk form. Inducing superconductivity in topological materials is a way to obtain topological superconductivity, which lays at the foundation for many proposals of fault tolerant quantum computing. Here, we demonstrate the emergence of superconductivity at the interface between WTe2 and the normal metal palladium. The superconductivity has a critical temperature of about 1.2 K. By studying the superconductivity in a perpendicular magnetic field, we obtain the coherence length and the London penetration depth. These parameters correspond to a low Fermi velocity and a high density of states at the Fermi level. This hints to a possible origin of superconductivity due to the formation of flatbands. Furthermore, the critical in-plane magnetic field exceeds the Pauli limit, suggesting a non-trivial nature of the superconducting state.

1.
S.
Nayak
,
S. H.
Simon
,
A.
Stern
,
M.
Freedman
, and
S. D.
Sarma
, “
Non-Abelian anyons and topological quantum computation
,”
Rev. Mod. Phys.
80
,
1083
(
2008
).
2.
G. Y.
Cho
,
J. H.
Bardarson
,
Y. M.
Lu
, and
J. E.
Moore
, “
Superconductivity of doped Weyl semimetals: Finite-momentum pairing and electronic analog of the 3He-A phase
,”
Phys. Rev. B
86
,
214514
(
2012
).
3.
H. Z.
Wei
,
S. P.
Chao
, and
V.
Aji
, “
Odd-parity superconductivity in Weyl semimetals
,”
Phys. Rev. B
89
,
014506
(
2014
).
4.
G.
Bednik
,
A. A.
Zyuzin
, and
A. A.
Burkov
, “
Superconductivity in Weyl metals
,”
Phys. Rev. B
92
,
035153
(
2015
).
5.
P.
Hosur
,
X.
Dai
,
Z.
Fang
, and
X. L.
Qi
, “
Time-reversal-invariant topological superconductivity in doped Weyl semimetals
,”
Phys. Rev. B
90
,
045130
(
2014
).
6.
C.
Chan
and
X. J.
Liu
, “
Non-Abelian Majorana modes protected by an emergent second Chern number
,”
Phys. Rev. Lett.
118
,
207002
(
2017
).
7.
E.
Tang
and
L.
Fu
, “
Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators
,”
Nat. Phys.
10
,
964
(
2014
).
8.
A. A.
Soluyanov
,
D.
Gresch
,
Z.
Wang
,
Q. S.
Wu
,
M.
Troyer
,
X.
Dai
, and
B. A.
Bernevig
, “
Type-II Weyl semimetals
,”
Nature
527
,
495
498
(
2015
).
9.
P.
Li
,
Y.
Wen
,
X.
He
,
Q.
Zhang
,
C.
Xia
,
Z.-M.
Yu
,
S. A.
Yang
,
Z.
Zhu
,
H. N.
Alshareef
, and
X.-X.
Zhang
, “
Evidence for topological type-II Weyl semimetal WTe2
,”
Nat. Commun.
8
,
2150
(
2017
).
10.
Z.
Wang
,
B. J.
Wieder
,
J.
Li
,
B.
Yan
, and
B. A.
Bernevig
, “
Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X=Mo, W)
,”
Phys. Rev. Lett.
123
,
186401
(
2019
).
11.
A.
Kononov
,
G.
Abulizi
,
K.
Qu
,
J.
Yan
,
D.
Mandrus
,
K.
Watanabe
,
T.
Taniguchi
, and
C.
Schönenberger
, “
One-dimensional edge transport in few-layer WTe2
,”
Nano Lett.
20
,
4228
(
2020
).
12.
Y.-B.
Choi
,
Y.
Xie
,
C.-Z.
Chen
,
J.
Park
,
S.-B.
Song
,
J.
Yoon
,
B. J.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Kim
,
K. C.
Fong
,
M. N.
Ali
,
K. T.
Law
, and
G.-H.
Lee
, “
Evidence of higher order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states
,”
Nat. Mater.
19
,
974
(
2020
).
13.
C.
Huang
,
A.
Narayan
,
E.
Zhang
,
X.
Xie
,
L.
Ai
,
S.
Liu
,
C.
Yi
,
Y.
Shi
,
S.
Sanvito
, and
F.
Xiu
, “
Edge superconductivity in multilayer WTe2 Josephson junction
,”
Natl. Sci. Rev.
7
,
1468
(
2020
).
14.
Z.
Fei
,
T.
Palomaki
,
S.
Wu
,
W.
Zhao
,
X.
Cai
,
B.
Sun
,
P.
Nguyen
,
J.
Finney
,
X.
Xu
, and
D. H.
Cobden
, “
Edge conduction in monolayer WTe2
,”
Nat. Phys.
13
,
677
(
2017
).
15.
S.
Wu
,
V.
Fatemi
,
Q. D.
Gibson
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Cava
, and
P.
Jarillo-Herrero
, “
Observation of the quantum spin Hall effect up to 100 Kelvin in a monolayer crystal
,”
Science
359
,
76
(
2018
).
16.
D.
Kang
,
Y.
Zhou
,
W.
Yi
,
C.
Yang
,
J.
Guo
,
Y.
Shi
,
S.
Zhang
,
Z.
Wang
,
C.
Zhang
,
S.
Jiang
,
A.
Li
,
K.
Yang
,
Q.
Wu
,
G.
Zhang
,
L.
Sun
, and
Z.
Zhao
, “
Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride
,”
Nat. Commun.
6
,
7804
(
2015
).
17.
X.-C.
Pan
,
X.
Chen
,
H.
Liu
,
Y.
Feng
,
Z.
Wei
,
Y.
Zhou
,
Z.
Chi
,
L.
Pi
,
F.
Yen
,
F.
Song
,
X.
Wan
,
Z.
Yang
,
B.
Wang
,
G.
Wang
, and
Y.
Zhang
, “
Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
,”
Nat. Commun.
6
,
7805
(
2015
).
18.
T.
Asaba
,
Y.
Wang
,
G.
Li
,
Z.
Xiang
,
C.
Tinsman
,
L.
Chen
,
S.
Zhou
,
S.
Zhao
,
D.
Laleyan
,
Y.
Li
,
Z.
Mi
, and
L.
Li
, “
Magnetic field enhanced superconductivity in epitaxial thin film WTe2
,”
Sci. Rep.
8
,
6520
(
2018
).
19.
E.
Sajadi
,
T.
Palomaki
,
Z.
Fei
,
W.
Zhao
,
P.
Bement
,
C.
Olsen
,
S.
Luescher
,
X.
Xu
,
J. A.
Folk
, and
D. H.
Cobden
, “
Gate-induced superconductivity in a monolayer topological insulator
,”
Science
362
,
922
(
2018
).
20.
V.
Fatemi
,
S.
Wu
,
Y.
Cao
,
L.
Bretheau
,
Q. D.
Gibson
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Cava
, and
P.
Jarillo-Herrero
, “
Electrically tunable low-density superconductivity in a monolayer topological insulator
,”
Science
362
,
926
(
2018
).
21.
Y.
Zhao
,
H.
Liu
,
J.
Yan
,
W.
An
,
J.
Liu
,
X.
Zhang
,
H.
Wang
,
Y.
Liu
,
H.
Jiang
,
Q.
Li
,
Y.
Wang
,
X.-Z.
Li
,
D.
Mandrus
,
X. C.
Xie
,
M.
Pan
, and
J.
Wang
, “
Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals
,”
Phys. Rev. B
92
,
041104
(
2015
).
22.
P.
Blake
,
E. W.
Hill
,
A. H.
Castro Neto
,
K. S.
Novoselov
,
D.
Jiang
,
R.
Yang
,
T. J.
Booth
, and
A. K.
Geim
, “
Making graphene visible
,”
Appl. Phys. Lett.
91
,
063124
(
2007
).
23.
P. J.
Zomer
,
M. H. D.
Guimaraes
,
J. C.
Brant
,
N.
Tombros
, and
B. J.
van Wees
, “
Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride
,”
Appl. Phys. Lett.
105
,
013101
(
2014
).
24.
M. N.
Ali
,
L.
Schoop
,
J.
Xiong
,
S.
Flynn
,
Q.
Gibson
,
M.
Hirschberger
,
N. P.
Ong
, and
R. J.
Cava
, “
Correlation of crystal quality and extreme magnetoresistance of WTe2
,”
Europhys. Lett.
110
,
67002
(
2015
).
25.
F.-X.
Xiang
,
A.
Srinivasan
,
Z. Z.
Du
,
O.
Klochan
,
S.-X.
Dou
,
A. R.
Hamilton
, and
X.-L.
Wang
, “
Thickness-dependent electronic structure in WTe2 thin films
,”
Phys. Rev. B
98
,
035115
(
2018
).
26.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S. L.
Tomarken
,
J. Y.
Luo
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R. C.
Ashoori
, and
P.
Jarillo-Herrero
, “
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
,”
Nature (London)
556
,
80
(
2018
).
27.
M.
Tinkham
,
Introduction to Superconductivity
, 2nd ed. (
McGraw-Hill, Inc.
,
New York
,
1996
).
28.
Y.
Saito
,
T.
Nojima
, and
Y.
Iwasa
, “
Highly crystalline 2D superconductors
,”
Nat. Rev. Mater.
2
,
16094
(
2016
).
29.
Y.
Liu
,
Y.
Xu
,
J.
Sun
,
C.
Liu
,
Y.
Liu
,
C.
Wang
,
Z.
Zhang
,
K.
Gu
,
Y.
Tang
,
C.
Ding
,
H.
Liu
,
H.
Yao
,
X.
Lin
,
L.
Wang
,
Q.-K.
Xue
, and
J.
Wang
, “
Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films
,”
Nano Lett.
20
,
5728
(
2020
).
30.
Y.
Liu
,
Z.
Wang
,
X.
Zhang
,
C.
Liu
,
Y.
Liu
,
Z.
Zhou
,
J.
Wang
,
Q.
Wang
,
Y.
Liu
,
C.
Xi
,
M.
Tian
,
H.
Liu
,
J.
Feng
,
X. C.
Xie
, and
J.
Wang
, “
Interface-induced Zeeman-protected superconductivity in ultrathin crystalline lead films
,”
Phys. Rev. X
8
,
021002
(
2018
).
31.
R. A.
Klemm
,
A.
Luther
, and
M. R.
Beasley
, “
Theory of the upper critical field in layered superconductors
,”
Phys. Rev. B
12
,
877
(
1975
).
32.
A. I.
Gubin
,
K. S.
Il’in
,
S. A.
Vitusevich
,
M.
Siegel
, and
N.
Klein
, “
Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films
,”
Phys. Rev. B
72
,
064503
(
2005
).
33.
O. O.
Shvetsov
,
A.
Kononov
,
A. V.
Timonina
,
N. N.
Kolesnikov
, and
E. V.
Deviatov
, “
Realization of a double-slit SQUID geometry by Fermi arc surface states in a WTe2 Weyl semimetal
,”
JETP Lett.
107
,
774
(
2018
).
34.
A.
Kononov
,
O. O.
Shvetsov
,
S. V.
Egorov
,
A. V.
Timonina
,
N. N.
Kolesnikov
, and
E. V.
Deviatov
, “
Signature of Fermi arc surface states in Andreev reflection at the WTe2 Weyl semimetal surface
,”
Europhys. Lett.
122
,
27004
(
2018
).
35.
V.
Fatemi
,
Q. D.
Gibson
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Cava
, and
P.
Jarillo-Herrero
, “
Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2
,”
Phys. Rev. B
95
,
041410
(
2017
).
36.
Z.
Zhu
,
X.
Lin
,
J.
Liu
,
B.
Fauqué
,
Q.
Tao
,
C.
Yang
,
Y.
Shi
, and
K.
Behnia
, “
Quantum oscillations, thermoelectric coefcients, and the Fermi surface of semimetallic WTe2
,”
Phys. Rev. Lett.
114
,
176601
(
2015
).
37.
W.
Yang
,
C.-J.
Mo
,
S.-B.
Fu
,
Y.
Yang
,
F.-W.
Zheng
,
X.-H.
Wang
,
Y.-A.
Liu
,
N.
Hao
, and
P.
Zhang
, “
Soft-mode-phonon-mediated unconventional superconductivity in monolayer 1T’-WTe2
,”
Phys. Rev. Lett.
125
,
237006
(
2020
).
38.
L.
Aggarwal
,
A.
Gaurav
,
G. S.
Thakur
,
Z.
Haque
,
A. K.
Ganguli
, and
G.
Sheet
, “
Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2
,”
Nat. Mat.
15
,
32
(
2016
).
39.
H.
Wang
,
H.
Wang
,
H.
Liu
,
H.
Lu
,
W.
Yang
,
S.
Jia
,
X.-J.
Liu
,
X. C.
Xie
,
J.
Wei
, and
J.
Wang
, “
Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals
,”
Nat. Mat.
15
,
38
(
2016
).
40.
O. O.
Shvetsov
,
V. D.
Esin
,
A. V.
Timonina
,
N. N.
Kolesnikov
, and
E. V.
Deviatov
, “
Surface superconductivity in three-dimensional Cd3As2 semimetal at the interface with a gold contact
,”
Phys. Rev. B
99
,
125305
(
2019
).
41.
W.
Zhu
,
X.
Hou
,
J.
Li
,
Y.
Huang
,
S.
Zhang
,
J.
He
,
D.
Chen
,
Y.
Wang
,
Q.
Dong
,
M.
Zhang
,
H.
Yang
,
Z.
Ren
,
J.
Hu
,
L.
Shan
, and
G.
Chen
, “
Interfacial superconductivity on the topological semimetal tungsten carbide induced by metal deposition
,”
Adv. Mater.
32
,
1907970
(
2020
).
42.
Y.
Xing
,
Z.
Shao
,
J.
Ge
,
J.
Luo
,
J.
Wang
,
Z.
Zhu
,
J.
Liu
,
Y.
Wang
,
Z.
Zhao
,
J.
Yan
,
D.
Mandrus
,
B.
Yan
,
X.-J.
Liu
,
M.
Pan
, and
J.
Wang
, “
Surface superconductivity in the type II Weyl semimetal TaIrTe4
,”
Natl. Sci. Rev.
7
,
579
(
2020
).
43.
B.
Shao
,
A.
Eich
,
C.
Sanders
,
A. S.
Ngankeu
,
M.
Bianchi
,
P.
Hofmann
,
A. A.
Khajetoorians
, and
T. O.
Wehling
, “
Pseudodoping of a metallic two-dimensional material by the supporting substrate
,”
Nat. Commun.
10
,
180
(
2019
).
44.
M.
Bai
,
F.
Yang
,
M.
Luysberg
,
J.
Feng
,
A.
Bliesener
,
G.
Lippertz
,
A. A.
Taskin
,
J.
Mayer
, and
Y.
Ando
, “
Novel self-epitaxy for inducing superconductivity in the topological insulator (Bi1xSbx)2Te3
,”
Phys. Rev. Mat.
4
,
094801
(
2020
).
45.
M.
Alidoust
,
K.
Halterman
, and
A. A.
Zyuzin
, “
Superconductivity in type-II Weyl semimetals
,”
Phys. Rev. B
95
,
155124
(
2017
).
46.
V. J.
Kauppila
,
F.
Aikebaier
, and
T. T.
Heikkilä
, “
Flat-band superconductivity in strained Dirac materials
,”
Phys. Rev. B
93
,
214505
(
2016
).
47.
D. I.
Indolese
,
R.
Delagrange
,
P.
Makk
,
J. R.
Wallbank
,
K.
Watanabe
,
T.
Taniguchi
, and
C.
Schönenberger
, “
Signatures of van Hove singularities probed by the supercurrent in a graphene–hBN superlattice
,”
Phys. Rev. Lett.
121
,
137701
(
2018
).
48.
Y. S.
Barash
and
P. I.
Nagornykh
, “
Dispersionless modes and the superconductivity of ultrathin films
,”
JETP Lett.
83
,
376
(
2006
).
49.
N. B.
Kopnin
,
T. T.
Heikkilä
, and
G. E.
Volovik
, “
High-temperature surface superconductivity in topological flat-band systems
,”
Phys. Rev. B
83
,
220503
(
2011
).
50.
W. P.
Davey
, “
Precision measurements of the lattice constants of twelve common metals
,”
Phys. Rev.
25
,
753
(
1925
).
51.
X.
Xing
,
W.
Zhou
,
J.
Wang
,
Z.
Zhu
,
Y.
Zhang
,
N.
Zhou
,
B.
Qian
,
X.
Xu
, and
Z.
Shi
, “
Two-band and Pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors
,”
Sci. Rep.
7
,
45943
(
2017
).
52.
A.
Kononov
, “
Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact
,” (Zenodo, 2020).
You do not currently have access to this content.