Plasmonic materials and phenomena have been widely studied and applied in multiple fields for a long time. One of the most promising applications is in the engineering of biosensor devices, offering label-free and real-time analysis of biomolecular interactions with excellent performances. In this tutorial, we provide a pedagogical review of the working principles of plasmonic biosensors, main fabrication methods, instrumentation, and general guidelines for their development. Special focus is placed on the biosensor performance characterization and assessment, as well as on the sensor surface biofunctionalization. In the end, we discuss the common procedure to develop and validate biosensors for relevant biomedical and environmental purposes and future perspectives in terms of boosting capabilities and sensor integration in point-of-care platforms.

1.
B.
Heidt
,
W. F.
Siqueira
,
K.
Eersels
,
H.
Diliën
,
B.
Van Grinsven
,
R. T.
Fujiwara
, and
T. J.
Cleij
, “
Point of care diagnostics in resource-limited settings: A review of the present and future of PoC in its most needed environment
,”
Biosensors
10
(
10
),
133
(
2020
).
2.
A.
Romeo
,
T. S.
Leung
, and
S.
Sánchez
, “
Smart biosensors for multiplexed and fully integrated point-of-care diagnostics
,”
Lab Chip
16
(
11
),
1957
1961
(
2016
).
3.
N.
Kalyani
,
S.
Goel
, and
S.
Jaiswal
, “
On-site sensing of pesticides using point-of-care biosensors: A review
,”
Environ. Chem. Lett.
1
,
3
(
2020
).
4.
M.
Soler
,
C. S.
Huertas
, and
L. M.
Lechuga
, “
Label-free plasmonic biosensors for point-of-care diagnostics: A review
,”
Expert Rev. Mol. Diagn.
19
(
1
),
71
81
(
2019
).
5.
F. S.
Ligler
and
J. J.
Gooding
, “
Lighting up biosensors: Now and the decade to come
,”
Anal. Chem.
91
(
74
),
8732
8738
(
2019
).
6.
D.
Liu
,
J.
Wang
,
L.
Wu
,
Y.
Huang
,
Y.
Zhang
,
M.
Zhu
,
Y.
Wang
,
Z.
Zhu
, and
C.
Yang
, “
Trends in miniaturized biosensors for point-of-care testing
,”
TrAC
122
,
115701
(
2020
).
7.
R. T.
Hill
, “
Plasmonic biosensors
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
7
(
2
),
152
168
(
2015
).
8.
R. W.
Wood
, “
On a remarkable case of uneven distribution of light in a diffraction grating spectrum
,”
Proc. Phys. Soc. London
18
(
1
),
269
275
(
1901
).
9.
R. W.
Wood
, “
XXVII. Diffraction gratings with controlled groove form and abnormal distribution of intensity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
23
(
134
),
310
317
(
1912
).
10.
L.
Rayleigh
and
L.
Rayleigh
, “
On the dynamical theory of gratings
,”
Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character.
79
(
532
),
399
416
(
1907
).
11.
R. W.
Wood
, “
Anomalous diffraction gratings
,”
Phys. Rev.
48
(
12
),
928
936
(
1935
).
12.
C. H.
Palmer
, “
Parallel diffraction grating anomalies*
,”
J. Opt. Soc. Am.
42
(
4
),
269
(
1952
).
13.
C. H.
Palmer
, “
Diffraction grating anomalies II coarse gratings*
,”
J. Opt. Soc. Am.
46
(
1
),
50
(
1956
).
14.
U.
Fano
, “
The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)
,”
J. Opt. Soc. Am.
31
(
3
),
213
(
1941
).
15.
D.
Bohm
and
D. A.
Pines
, “
Collective description of electron interactions. I. Magnetic interactions
,”
Phys. Rev.
82
(
5
),
625
634
(
1951
).
16.
D.
Pines
and
D. A.
Bohm
, “
Collective description of electron interactions: II. Collective vs individual particle aspects of the interactions
,”
Phys. Rev.
85
(
2
),
338
353
(
1952
).
17.
D. A.
Pines
, “
Collective description of electron interactions: IV. Electron interaction in metals
,”
Phys. Rev.
92
(
3
),
626
636
(
1953
).
18.
E.
Kretschmann
and
H.
Raether
, “
Radiative decay of non radiative surface plasmons excited by light
,”
Phys. Rev. Lett.
19
,
398
(
1968
).
19.
A.
Otto
, “
Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection
,”
Z. Phys.
216
(
4
),
398
410
(
1968
).
20.
B.
Liedberg
,
C.
Nylander
, and
I.
Lunström
, “
Surface plasmon resonance for gas detection and biosensing
,”
Sensors Actuators
4
(
C
),
299
304
(
1983
).
21.
D. C.
Cullen
,
R. G. W.
Brown
, and
C. R.
Lowe
, “
Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings
,”
Biosensors
3
(
4
),
211
225
(
1987
).
22.
I.
Pockrand
,
J. D.
Swalen
,
J. G.
Gordon
, and
M. R.
Philpott
, “
Surface plasmon spectroscopy of organic monolayer assemblies
,”
Surf. Sci.
74
(
1
),
237
244
(
1978
).
23.
M.
Malmqvist
, “
BIACORE: An affinity biosensor system for characterization of biomolecular interactions
,”
Biochem. Soc. Trans.
27
,
335
340
(
1999
).
24.
B.
Liedberg
,
C.
Nylander
, and
I.
Lundström
, “
Biosensing with surface plasmon resonance—How it all started
,”
Biosens. Bioelectron.
10
(
8
),
i
ix
(
1995
).
25.
J. J.
Burke
,
G. I.
Stegeman
, and
T.
Tamir
, “
Surface-polariton-like waves guided by thin
,”
Lossy Metal Films. Phys. Rev. B
33
(
8
),
5186
5201
(
1986
).
26.
D. R.
Tilley
, “
Surface polaritons: Electromagnetic waves at surfaces and interfaces
,”
Opt. Acta Int. J. Opt.
30
(
11
),
1501
1501
(
1983
).
27.
J.
Homola
, in
Optical Biosensors
, 2nd ed., edited by
F. S.
Ligler
and
C.
Rowe Taitt
(
Elsevier
,
2008
), pp.
185
242
.
28.
Y.
Gutiérrez
,
A. S.
Brown
,
F.
Moreno
, and
M.
Losurdo
, “
Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance
,”
J. Appl. Phys.
128
(
8
),
080901
(
2020
).
29.
Y.
Yang
,
I. I.
Kravchenko
,
D. P.
Briggs
, and
J.
Valentine
, “
All-dielectric metasurface analogue of electromagnetically induced transparency
,”
Nat. Commun.
5
(
1
),
5753
(
2014
).
30.
A. N.
Grigorenko
,
M.
Polini
, and
K. S.
Novoselov
, “
Graphene plasmonics
,”
Nat. Photonics
6
(
11
),
749
758
(
2012
).
31.
J.
Homola
and
M.
Piliarik
, “
Surface plasmon resonance (SPR) sensors
,” in
Springer Series on Chemical Sensors and Biosensors
, 4th ed. (
Springer
,
2006
), pp.
45
67
.
32.
B.
Prabowo
,
A.
Purwidyantri
, and
K.-C.
Liu
, “
Surface plasmon resonance optical sensor: A review on light source technology
,”
Biosensors
8
(
3
),
80
(
2018
).
33.
J.
Dostálek
,
J.
Čtyroký
,
J.
Homola
,
E.
Brynda
,
M.
Skalský
,
P.
Nekvindová
,
J.
Špirková
,
J.
Škvor
, and
J.
Schröfel
, “
Surface plasmon resonance biosensor based on integrated optical waveguide
,”
Sens. Actuators B
76
,
8
12
(
2001
).
34.
A. A.
Rifat
,
R.
Ahmed
,
A. K.
Yetisen
,
H.
Butt
,
A.
Sabouri
,
G. A.
Mahdiraji
,
S. H.
Yun
, and
F. R. M.
Adikan
, “
Photonic crystal fiber based plasmonic sensors
,”
Sens. Actuators B
243
,
311
325
(
2017
).
35.
A. K.
Sharma
,
R.
Jha
, and
B. D.
Gupta
, “
Fiber-optic sensors based on surface plasmon resonance: A comprehensive review
,”
IEEE Sensors J.
7
(
8
),
1118
1129
(
2007
).
36.
C.
Caucheteur
,
T.
Guo
, and
J.
Albert
, “
Polarization-Assisted fiber bragg grating sensors: Tutorial and review
,”
J. Light. Technol.
35
(
16
),
3311
3322
(
2017
).
37.
J.
Homola
,
S. S.
Yee
, and
G.
Gauglitz
, “
Surface plasmon resonance sensors: Review
,”
Sensors Actuators B Chem.
54
(
1
),
3
15
(
1999
).
38.
C. L.
Wong
and
M.
Olivo
, “
Surface plasmon resonance imaging sensors: A review
,”
Plasmonics
9
(
4
),
809
824
(
2014
).
39.
J.
Homola
, “
On the sensitivity of surface plasmon resonance sensors with spectral interrogation
,”
Sensors Actuators B Chem.
41
(
1–3
),
207
211
(
1997
).
40.
W.-C.
Kuo
,
C.
Chou
, and
H.-T.
Wu
, “
Optical heterodyne surface-plasmon resonance biosensor
,”
Opt. Lett.
28
(
15
),
1329
(
2003
).
41.
S.
Deng
,
P.
Wang
, and
X.
Yu
, “
Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects
,”
Sensors
17
(
12
),
2819
(
2017
).
42.
Z.
Geng
,
X.
Zhang
,
Z.
Fan
,
X.
Lv
,
Y.
Su
, and
H.
Chen
, “
Recent progress in optical biosensors based on smartphone platforms
,”
Sensors
17
(
11
),
2449
(
2017
).
43.
H.
Guner
,
E.
Ozgur
,
G.
Kokturk
,
M.
Celik
,
E.
Esen
,
A. E.
Topal
,
S.
Ayas
,
Y.
Uludag
,
C.
Elbuken
, and
A. A.
Dana
, “
Smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection
,”
Sensors Actuators B Chem.
239
,
571
577
(
2017
).
44.
P.
Preechaburana
,
M. C.
Gonzalez
,
A.
Suska
, and
D.
Filippini
, “
Surface plasmon resonance chemical sensing on cell phones
,”
Angew. Chem. Int. Ed.
51
(
46
),
11585
11588
(
2012
).
45.
I.
Freestone
,
N.
Meeks
,
M.
Sax
, and
C.
Higgitt
, “
The Lycurgus Cup—A Roman nanotechnology
,”
Gold Bull.
40
(
4
),
270
277
(
2008
).
46.
K. M.
Mayer
and
J. H.
Hafner
, “
Localized surface plasmon resonance sensors
,”
Chem. Rev. Am. Chem. Soc.
111
,
3828
3857
(
2011
).
47.
J.
Zhao
,
X.
Zhang
,
C. R.
Yonzon
,
A. J.
Hoes
, and
R. P.
Van Duyne
, “
Localized surface plasmon resonance biosensors
,”
Nanomedicine
1
(
2
),
219
228
(
2006
).
48.
E.
Hutter
and
J. H.
Fendler
, “
Exploitation of localized surface plasmon resonance
,”
Adv. Mater.
16
(
19
),
1685
1706
(
2004
).
49.
M. A.
Otte
,
B.
Sepúlveda
,
W.
Ni
,
J. P.
Juste
,
L. M.
Liz-Marzán
, and
L. M.
Lechuga
, “
Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing
,”
ACS Nano
4
(
1
),
349
357
(
2010
).
50.
M. F.
Limonov
,
M. V.
Rybin
,
A. N.
Poddubny
, and
Y. S.
Kivshar
, “
Fano resonances in photonics
,”
Nat. Photonics
11
(
9
),
543
554
(
2017
).
51.
M. R.
Jones
,
K. D.
Osberg
,
R. J.
MacFarlane
,
M. R.
Langille
, and
C. A.
Mirkin
, “
Templated techniques for the synthesis and assembly of plasmonic nanostructures
,”
Chem. Rev.
111
(
6
),
3736
3827
(
2011
).
52.
Y.
Yin
and
A. P.
Alivisatos
, “
Colloidal nanocrystal synthesis and the organic-inorganic interface
,”
Nature
437
(
7059
),
664
670
(
2005
).
53.
K.
Du
,
J.
Ding
,
Y.
Liu
,
I.
Wathuthanthri
, and
C.-H.
Choi
, “
Stencil lithography for scalable micro- and nanomanufacturing
,”
Micromachines
8
(
4
),
131
(
2017
).
54.
Q.
Xie
,
M. H.
Hong
,
H. L.
Tan
,
G. X.
Chen
,
L. P.
Shi
, and
T. C.
Chong
, “
Fabrication of nanostructures with laser interference lithography
,”
J. Alloys Compounds
449
(
1–2
),
261
264
(
2008
).
55.
K.
Xiong
,
G.
Emilsson
, and
A. B.
Dahlin
, “
Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters
,”
Analyst
141
(
12
),
3803
3810
(
2016
).
56.
C.
Escobedo
, “
On-chip nanohole array based sensing: A review
,”
Lab Chip
13
(
13
),
2445
(
2013
).
57.
A.
Prasad
,
J.
Choi
,
Z.
Jia
,
S.
Park
, and
M. R.
Gartia
, “
Nanohole array plasmonic biosensors: Emerging point-of-care applications
,”
Biosensors Bioelectronics
130
,
185
203
(
2019
).
58.
H.
Chen
,
X.
Kou
,
Z.
Yang
,
W.
Ni
, and
J.
Wang
, “
Shape- and size-dependent refractive index sensitivity of gold nanoparticles
,”
Langmuir
24
(
10
),
5233
5237
(
2008
).
59.
H.
Chen
,
L.
Shao
,
K. C.
Woo
,
T.
Ming
,
H. Q.
Lin
, and
J.
Wang
, “
Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength
,”
J. Phys. Chem. C
113
(
41
),
17691
17697
(
2009
).
60.
G. K.
Joshi
,
P. J.
McClory
,
S.
Dolai
, and
R.
Sardar
, “
Improved localized surface plasmon resonance biosensing sensitivity based on chemically-synthesized gold nanoprisms as plasmonic transducers
,”
J. Mater. Chem.
22
(
3
),
923
931
(
2012
).
61.
A. E.
Cetin
,
S.
Kaya
,
A.
Mertiri
,
E.
Aslan
,
S.
Erramilli
,
H.
Altug
, and
M.
Turkmen
, “
Dual-band plasmonic resonator based on jerusalem cross-shaped nanoapertures
,”
Photonics Nanostruct. Fundam. Appl.
15
,
73
80
(
2015
).
62.
N.
Verellen
,
P.
Van Dorpe
,
C.
Huang
,
K.
Lodewijks
,
G. A. E.
Vandenbosch
,
L.
Lagae
, and
V. V.
Moshchalkov
, “
Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing
,”
Nano Lett.
11
(
2
),
391
397
(
2011
).
63.
J.
Homola
,
I.
Koudela
, and
S. S.
Yee
, “
Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison
,”
Sensors Actuators B Chem.
54
(
1
),
16
24
(
1999
).
64.
M.
Soler
,
M.-C.
Estevez
,
M.
Alvarez
,
M. A.
Otte
,
B.
Sepulveda
, and
L. M.
Lechuga
, “
Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies
,”
Sensors
14
(
2
),
2239
(
2014
).
65.
P.
Offermans
,
M. C.
Schaafsma
,
S. R. K.
Rodriguez
,
Y.
Zhang
,
M.
Crego-Calama
,
S. H.
Brongersma
, and
J.
Gómez Rivas
, “U
niversal scaling of the figure of merit of plasmonic sensors
,”
ACS Nano
5
(
6
),
5151
5157
(
2011
).
66.
A. A.
Yanik
,
A. E.
Cetin
,
M.
Huang
,
A.
Artar
,
S. H.
Mousavi
,
A.
Khanikaev
,
J. H.
Connor
,
G.
Shvets
, and
H.
Altug
, “
Seeing protein monolayers with naked eye through plasmonic Fano resonances
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
29
),
11784
11789
(
2011
).
67.
S.
Zhang
,
K.
Bao
,
N. J.
Halas
,
H.
Xu
, and
P.
Nordlander
, “
Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed
,”
Nano Lett.
11
(
4
),
1657
1663
(
2011
).
68.
T. G.
Habteyes
,
S.
Dhuey
,
E.
Wood
,
D.
Gargas
,
S.
Cabrini
,
P. J.
Schuck
,
A. P.
Alivisatos
, and
S. R.
Leone
, “
Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative
,”
ACS Nano
6
(
6
),
5702
5709
(
2012
).
69.
B.
Brian
,
B.
Sepúlveda
,
Y.
Alaverdyan
,
L. M.
Lechuga
, and
M.
Käll
, “
Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates
,”
Opt. Express
17
(
3
),
2015
(
2009
).
70.
M. A.
Otte
,
M. C.
Estévez
,
L. G.
Carrascosa
,
A. B.
González-Guerrero
,
L. M.
Lechuga
, and
B.
Sepúlveda
, “
Improved biosensing capability with novel suspended nanodisks
,”
J. Phys. Chem. C
115
(
13
),
5344
5351
(
2011
).
71.
M.
Oliverio
,
S.
Perotto
,
G. C.
Messina
,
L.
Lovato
, and
F.
De Angelis
, “
Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs
,”
ACS Appl. Mater. Interfaces
9
(
35
),
29394
29411
(
2017
).
72.
E.
Mauriz
,
M. C.
García-Fernández
, and
L. M.
Lechuga
, “
Towards the design of universal immunosurfaces for SPR-based assays: A review
,”
TrAC
79
,
191
198
(
2016
).
73.
M.
Soler
,
C. S.
Huertas
, and
L. M.
Lechuga
, “
Label-free plasmonic biosensors for point-of-care diagnostics: A review
,”
Expert Rev. Mol. Diagn.
19
,
71
81
(
2019
).
74.
C. S.
Huertas
,
M.
Soler
,
M.-C.
Estevez
, and
L. M.
Lechuga
, “
One-Step immobilization of antibodies and DNA on gold sensor surfaces via a poly-adenine oligonucleotide approach
,”
Anal. Chem.
92
(
18
),
12596
(
2020
).
75.
Y.
Saylan
,
S.
Akgönüllü
, and
A.
Denizli
, “
Plasmonic sensors for monitoring biological and chemical threat agents
,”
Biosensors
10
(
10
),
142
(
2020
).
76.
G.
Zanchetta
,
R.
Lanfranco
,
F.
Giavazzi
,
T.
Bellini
, and
M.
Buscaglia
, “
Emerging applications of label-free optical biosensors
,”
Nanophotonics
6
(
4
),
627
645
(
2017
).
77.
N.
Bellassai
,
R.
D’Agata
,
V.
Jungbluth
, and
G.
Spoto
, “
Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis
,”
Front. Chem.
7
,
570
(
2019
).
78.
M.
Soler
,
M. C.
Estevez
,
M.
Cardenosa-Rubio
,
A.
Astua
, and
L. M.
Lechuga
, “
How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 case
,”
ACS Sensors
5
(
9
),
2663
2678
(
2020
).
You do not currently have access to this content.