We report a spin crossover material based on a cyanido-bridged FeII–MoIV assembly, FeII2[MoIV(CN)8](1-(3-pyridyl)ethanol)8⋅4H2O. This compound has a cubic crystal structure in the space group and is composed of a three-dimensional cyanido-bridged FeII–MoIV coordination network with one crystallographic FeII site. It exhibits incomplete spin crossover, because 21% of the high-spin FeII sites (S = 2) changes to low-spin FeII sites (S = 0) in the temperature range between 200 and 50 K. Thermal hysteresis is not observed. Such an incomplete and gradual spin crossover is attributed to the elastic frustration between the high-spin and the low-spin FeII sites (e.g., alternating arrangement such as –HS–LS–HS–LS–).
REFERENCES
1.
P.
Gütlich
and H. A.
Goodwin
, Spin Crossover in Transition Metal Compounds I
, edited by P.
Gütlich
and H. A.
Goodwin
(Springer
, 2004
), Chap. 1.2.
S.
Decurtins
, P.
Gütlich
, C. P.
Köhler
, H.
Spiering
, and A.
Hauser
, “Light-induced excited spin state trapping in a transition–metal complex: The hexa-1-propyltetrazole-iron(II) tetrafluoroborate spin-crossover system
,” Chem. Phys. Lett.
105
, 1
–4
(1984
). 3.
J. A.
Real
, E.
Andrés
, M. C.
Muñoz
, M.
Julve
, T.
Granier
, A.
Bousseksou
, and F.
Varret
, “Spin crossover in a catenane supramolecular system
,” Science
268
, 265
–267
(1995
). 4.
M. A.
Halcrow
, “Structure: Function relationships in molecular spin-crossover complexes
,” Chem. Soc. Rev.
40
, 4119
–4142
(2011
). 5.
G. J.
Halder
, C. J.
Kepert
, B.
Moubaraki
, K. S.
Murray
, and J. D.
Cashion
, “Guest dependent spin crossover in a nanoporous molecular framework material
,” Science
298
, 1762
–1765
(2002
). 6.
S.
Ohkoshi
, K.
Imoto
, Y.
Tsunobuchi
, S.
Takano
, and H.
Tokoro
, “Light-induced spin-crossover magnet
,” Nat. Chem.
3
, 564
–569
(2011
). 7.
J. F.
Létard
, P.
Guionneau
, E.
Codjovi
, O.
Lavastre
, G.
Bravic
, D.
Chasseau
, and O.
Kahn
, “Wide thermal hysteresis for the mononuclear spin-crossover compound cis-bis(thiocyanato)bis[N-(2′-pyridylmethylene)-4-(phenylethynyl)anilino]iron(II)
,” J. Am. Chem. Soc.
119
, 10861
–10862
(1997
). 8.
K.
Boukheddaden
, I.
Shteto
, B.
Hôo
, and F.
Varret
, “Dynamical model for spincrossover solids. I. Relaxation effects in the mean-field approach
,” Phys. Rev. B
62
, 14796
–14805
(2000
). 9.
F.
Renz
, H.
Oshio
, V.
Ksenofontov
, M.
Waldeck
, H.
Spiering
, and P.
Gütlich
, “Strong field iron (II) complex converted by light into a long-lived high-spin state
,” Angew. Chem. Int. Ed.
39
, 3699
–3700
(2000
). 10.
M. C.
Muñoz
and J. A.
Real
, “Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers
,” Coord. Chem. Rev.
255
, 2068
–2093
(2011
). 11.
S.
Ohkoshi
and H.
Tokoro
, “Photomagnetism in cyano-bridged bimetal assemblies
,” Acc. Chem. Res.
45
, 1749
–1758
(2012
). 12.
O.
Kahn
and C. J.
Martinez
, “Spin-transition polymers: From molecular materials toward memory devices
,” Science
279
, 44
–48
(1998
). 13.
S.
Ohkoshi
, S.
Takano
, K.
Imoto
, M.
Yoshikiyo
, A.
Namai
, and H.
Tokoro
, “90-degree optical switching of output second harmonic light in chiral photomagnet
,” Nat. Photon.
8
, 65
–71
(2014
). 14.
A.
Holovchenko
, J.
Dugay
, M.
Giménez-Marqués
, R.
Torres-Cavanillas
, E.
Coronado
, and H. S. J.
van der Zant
, “Near room-temperature memory devices based on hybrid spin-crossover@SiO2 nanoparticles coupled to single-layer graphene nanoelectrodes
,” Adv. Mater.
28
, 7228
–7233
(2016
). 15.
K.
Senthil Kumar
and M.
Ruben
, “Emerging trends in spin crossover (SCO) based functional materials and devicesm
,” Coord. Chem. Rev.
346
, 176
–205
(2017
). 16.
G.
Molnár
, S.
Rat
, L.
Salmon
, W.
Nicolazzi
, and A.
Bousseksou
, “Spin crossover nanomaterials: From fundamental concepts to devices
,” Adv. Mater.
30
, 1703862
(2018
). 17.
R.
Torres-Cavanillas
, R.
Sanchis-Gual
, J.
Dugay
, M.
Coronado-Puchau
, M.
Giménez-Marqués
, and E.
Coronado
, “Design of bistable gold@spin-crossover core-shell nanoparticles showing large electrical responses for the spin switching
,” Adv. Mater.
31
, 1900039
(2019
). 18.
A.
Bousseksou
, G.
Molnár
, P.
Demont
, and J.
Menegotto
, “Observation of a thermal hysteresis loop in the dielectric constant of spin crossover complexes: Towards molecular memory devices
,” J. Mater. Chem.
13
, 2069
–2071
(2003
). 19.
N.
Baadji
, M.
Piacenza
, T.
Tugsuz
, F.
Della Sala
, G.
Maruccio
, and S.
Sanvito
, “Electrostatic spin crossover effect in polar magnetic molecules
,” Nat. Mater.
8
, 813
–817
(2009
). 20.
P.
Güetlich
, A. B.
Gaspar
, and Y.
Garcia
, “Spin state switching in iron coordination compounds
,” Beil. J. Org. Chem.
9
, 342
–391
(2013
). 21.
T.
Miyamachi
, M.
Gruber
, V.
Davesne
, M.
Bowen
, S.
Boukari
, L.
Joly
, F.
Scheurer
, G.
Rogez
, T.
Yamada
, P.
Ohresser
, E.
Beaurepaire
, and W.
Wulfhekel
, “Robust spin crossover and memristance across a single molecule
,” Nat. Commun.
3
, 1
–6
(2012
). 22.
P. N.
Martinho
, B.
Gildea
, M. M.
Harris
, T.
Lemma
, A. D.
Naik
, H.
Müller-Bunz
, T. E.
Keyes
, Y.
Garcia
, and G. G.
Morgan
, “Cooperative spin transition in a mononuclear manganese(III) complex
,” Angew. Chem. Int. Ed.
51
, 12597
–12601
(2012
). 23.
K.
Bhar
, S.
Khan
, J.
Sanchez Costa
, J.
Ribas
, O.
Roubeau
, P.
Mitra
, and B. K.
Ghosh
, “Crystallographic evidence for reversible symmetry breaking in a spin-crossover d7 cobalt(II) coordination polymer
,” Angew. Chem. Int. Ed.
51
, 2142
–2145
(2012
). 24.
A. J.
Fitzpatrick
, E.
Trzop
, H.
Müller-Bunz
, M. M.
Dîrtu
, Y.
Garcia
, E.
Collet
, and G. G.
Morgan
, “Electronic vs. structural ordering in a manganese(III) spin crossover complex
,” Chem. Commun.
51
, 17540
–17543
(2015
). 25.
E.
Tailleur
, M.
Marchivie
, N.
Daro
, G.
Chastanet
, and P.
Guionneau
, “Thermal spin-crossover with a large hysteresis spanning room temperature in a mononuclear complex
,” Chem. Commun.
53
, 4763
–4766
(2017
). 26.
W.
Phonsri
, P.
Harding
, L.
Liu
, S. G.
Telfer
, K. S.
Murray
, B.
Moubaraki
, T. M.
Ross
, G. N. L.
Jameson
, and D. J.
Harding
, “Solvent modified spin crossover in an iron(III) complex: Phase changes and an exceptionally wide hysteresis
,” Chem. Sci.
8
, 3949
–3959
(2017
). 27.
J.
Weihermüller
, S.
Schlamp
, W.
Milius
, F.
Puchtler
, J.
Breu
, P.
Ramming
, S.
Hüttner
, S.
Agarwal
, C.
Göbel
, M.
Hund
, G.
Papastavrou
, and B.
Weber
, “Amphiphilic iron(II) spin crossover coordination polymers: Crystal structures and phase transition properties
,” J. Mater. Chem. C
7
, 1151
–1163
(2019
). 28.
C. R.
Gros
, M. K.
Peprah
, B. D.
Hosterman
, T. V.
Brinzari
, P. A.
Quintero
, M.
Sendova
, M. W.
Meisel
, and D. R.
Talham
, “Light-induced magnetization changes in a coordination polymer heterostructure of a Prussian blue analogue and a Hofmann-like Fe(II) spin crossover compound
,” J. Am. Chem. Soc.
136
, 9846
–9849
(2014
). 29.
Y.-S.
Koo
and J. R.
Galán-Mascarós
, “Spin crossover probes confer multistability to organic conducting polymers
,” Adv. Mater.
26
, 6785
–6789
(2014
). 30.
C.
Lochenie
, W.
Bauer
, A. P.
Railliet
, S.
Schlamp
, Y.
Garcia
, and B.
Weber
, “Large thermal hysteresis for iron(II) spin crossover complexes with N-(pyrid-4-yl)isonicotinamide
,” Inorg. Chem.
53
, 11563
–11572
(2014
). 31.
S.
Brooker
, “Spin crossover with thermal hysteresis: Practicalities and lessons learnt
,” Chem. Soc. Rev.
44
, 2880
–2892
(2015
). 32.
M.
Paez-Espejo
, M.
Sy
, and K.
Boukheddaden
, “Elastic frustration causing Two-step and multistep transitions in spin-crossover solids: Emergence of complex antiferroelastic structures
,” J. Am. Chem. Soc.
138
, 3202
–3210
(2016
). 33.
M.
Estrader
, J.
Salinas Uber
, L. A.
Barrios
, J.
Garcia
, L.
Lloyd-Williams
, O.
Roubeau
, S. J.
Teat
, and G.
Aromí
, “A magnet-optical molecular device: Interplay of spin crossover, luminescence, photomagnetism, and photochromism
,” Angew. Chem. Int. Ed.
56
, 15622
–15627
(2017
). 34.
M.
Paez-Espejo
, M.
Sy
, and K.
Boukheddaden
, “Unprecedented bistability in spin-crossover solids based on the retroaction of the high spin low-spin interface with the crystal bending
,” J. Am. Chem. Soc.
140
, 11954
–11964
(2018
). 35.
Y.
Guo
, S.
Xue
, M. M.
Dîrtu
, and Y.
Garcia
, “A versatile iron(II)-based colorimetric sensor for the vapor-phase detection of alcohols and toxic gases
,” J. Mater. Chem. C
6
, 3895
–3900
(2018
). 36.
T.
Shiga
, R.
Saiki
, L.
Akiyama
, R.
Kumai
, D.
Natke
, F.
Renz
, J. M.
Cameron
, G. N.
Newton
, and H.
Oshio
, “A Brønsted-ligand-based iron complex as a molecular switch with five accessible states
,” Angew. Chem. Int. Ed.
58
, 5658
–5662
(2019
). 37.
T.
Boonprab
, S. J.
Lee
, S. G.
Telfer
, K. S.
Murray
, W.
Phonsri
, G.
Chastanet
, E.
Collet
, E.
Trzop
, G. N. L.
Jameson
, P.
Harding
, and D. J.
Harding
, “The first observation of hidden hysteresis in an iron(III) spin-crossover complex
,” Angew. Chem. Int. Ed.
58
, 11811
–11815
(2019
). 38.
S.
Ferlay
, T.
Mallah
, R.
Ouahès
, P.
Veillet
, and M.
Verdaguer
, “A room-temperature organometallic magnet based on Prussian blue
,” Nature
378
, 701
–703
(1995
). 39.
M.
Verdaguer
, A.
Bleuzen
, V.
Marvaud
, J.
Vaissermann
, M.
Seuleiman
, C.
Desplanches
, A.
Scuiller
, C.
Train
, R.
Garde
, G.
Gelly
, C.
Lomenech
, I.
Rosenman
, P.
Veillet
, C.
Cartier
, and F.
Villain
, “Molecules to build solids: High TC molecule-based magnets by design and recent revival of cyano complexes chemistry
,” Coord. Chem. Rev.
190-192
, 1023
–1047
(1999
). 40.
J. S.
Miller
, “Magnetically ordered molecule-based materials
,” Chem. Soc. Rev.
40
, 3266
–3296
(2011
). 41.
S. M.
Holmes
and G. S.
Girolami
, “Sol−gel synthesis of KVII[CrIII(CN)6]⋅2H2O: A crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C
,” J. Am. Chem. Soc.
121
, 5593
–5594
(1999
). 42.
K. R.
Dunbar
and R. A.
Heintz
, “Chemistry of transition metal cyanide compounds: Modern perspectives
,” Prog. Inorg. Chem.
45
, 283
–391
(1996
). 43.
L.
Catala
, D.
Brinzei
, Y.
Prado
, A.
Gloter
, O.
Stéphan
, G.
Rogez
, and T.
Mallah
, “Core–multishell magnetic coordination nanoparticles: Toward multifunctionality on the nanoscale
,” Angew. Chem. Int. Ed.
48
, 183
–187
(2008
). 44.
A.
Palii
, B.
Tsukerblat
, S.
Klokishner
, K. R.
Dunbar
, J. M.
Clemente-Juan
, and E.
Coronado
, “Beyond the spin model: Exchange coupling in molecular magnets with unquenched orbital angular momenta
,” Chem. Soc. Rev.
40
, 3130
–3156
(2011
). 45.
Y.
Zhang
, D.
Li
, R.
Clérac
, M.
Kalisz
, C.
Mathonière
, and S. M.
Holmes
, “Reversible thermally and photoinduced electron transfer in a cyano-bridged {Fe2Co2} square complex
,” Angew. Chem., Int. Ed.
49
, 3752
–3756
(2010
). 46.
M.
Cammarata
, S.
Zerdane
, L.
Balducci
, G.
Azzolina
, S.
Mazerat
, C.
Exertier
, M.
Trabuco
, M.
Levantino
, R.
Alonso-Mori
, J. M.
Glownia
, S.
Song
, L.
Catala
, T.
Mallah
, S. F.
Matar
, and E.
Collet
, “Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue
,” Nat. Chem.
13
, 10
–14
(2021
). 47.
S.
Ohkoshi
, K.
Nakagawa
, K.
Imoto
, H.
Tokoro
, Y.
Shibata
, K.
Okamoto
, Y.
Miyamoto
, M.
Komine
, M.
Yoshikiyo
, and A.
Namai
, “A photoswitchable polar crystal that exhibits superionic conduction
,” Nat. Chem.
12
, 338
–344
(2020
). 48.
S.
Ohkoshi
, K.
Arai
, Y.
Sato
, and K.
Hashimoto
, “Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly
,” Nat. Mater.
3
, 857
–861
(2004
). 49.
S.
Ohkoshi
, H.
Tokoro
, T.
Matsuda
, H.
Takahashi
, H.
Irie
, and K.
Hashimoto
, “Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate
,” Angew. Chem. Int. Ed.
46
, 3238
–3241
(2007
). 50.
T.
Yoshida
, K.
Nakabayashi
, H.
Tokoro
, M.
Yoshikiyo
, A.
Namai
, K.
Imoto
, K.
Chiba
, and S.
Ohkoshi
, “Extremely low-frequency phonon material and its temperature- and photo-induced switching effects
,” Chem. Sci.
11
, 8989
–8998
(2020
). 51.
M.
Shatruk
, A.
Dragulescu-Andrasi
, K. E.
Chambers
, S. A.
Stoian
, E. L.
Bominaar
, C.
Achim
, and K. R.
Dunbar
, “Properties of Prussian blue materials manifested in molecular complexes: Observation of cyanide linkage isomerism and spin-crossover behavior in pentanuclear cyanide clusters
,” J. Am. Chem. Soc.
129
(19
), 6104
–6116
(2007
). 52.
R.
Herchel
, R.
Boča
, M.
Gembický
, J.
Kožís˜ek
, and F.
Renz
, “Spin crossover in a tetranuclear Cr(III)-Fe(III)3 complex
,” Inorg. Chem.
43
, 4103
–4105
(2004
). 53.
M.
Nihei
, M.
Ui
, and H.
Oshio
, “Cyanide-bridged tri- and tetra-nuclear spin crossover complexes
,” Polyhedron
28
, 1718
–1721
(2009
). 54.
T.
Matsumoto
, G. N.
Newton
, T.
Shiga
, S.
Hayami
, Y.
Matsui
, H.
Okamoto
, R.
Kumai
, Y.
Murakami
, and H.
Oshio
, “Programmable spin-state switching in a mixed-valence spin-crossover iron grid
,” Nat. Commun.
5
, 1
–8
(2014
). 55.
S.
Chorazy
, R.
Podgajny
, K.
Nakabayashi
, J.
Stanek
, M.
Rams
, B.
Sieklucka
, and S.
Ohkoshi
, “FeII spin-crossover phenomenon in the pentadecanuclear Fe9[Re(CN)8]6 spherical cluster
,” Angew. Chem. Int. Ed.
127
, 5182
–5186
(2015
). 56.
S.
Chorazy
, J.
Stanek
, W.
Nogaś
, A.
Majcher
, M.
Rams
, M.
Kozieł
, E.
Juszyńska-Gałązka
, K.
Nakabayashi
, S.
Ohkoshi
, B.
Sieklucka
, and R.
Podgajny
, “Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9−xCox[W(CN)8]6} (x = 0 - 9) molecular solid solution
,” J. Am. Chem. Soc.
138
, 1635
–1646
(2016
). 57.
C.
Zheng
, S.
Jia
, Y.
Dong
, J.
Xu
, H.
Sui
, F.
Wang
, and D.
Li
, “Symmetry breaking and two-step spin-crossover behavior in two cyano-bridged mixed-valence {FeIII2(μ-CN)4FeII2} clusters
,” Inorg. Chem.
58
, 14316
–14324
(2019
). 58.
G.
Agustí
, M. C.
Muñoz
, A. B.
Gaspar
, and J. A.
Real
, “Spin-crossover behavior in cyanide-bridged iron(II)-copper(I) bimetallic 1-3D metal-organic frameworks
,” Inorg. Chem.
48
, 3371
–3381
(2009
). 59.
R.
Ababei
, C.
Pichon
, O.
Roubeau
, Y.-G.
Li
, N.
Bréfuel
, L.
Buisson
, P.
Guionneau
, C.
Mathonière
, and R.
Clérac
, “Rational design of a photomagnetic chain: Bridging single-molecule magnets with a spin-crossover complex
,” J. Am. Chem. Soc.
135
, 14840
–14853
(2013
). 60.
F.
Setifi
, E.
Milin
, C.
Charles
, F.
Thétiot
, S.
Triki
, and C. J.
Gómez-García
, “Spin crossover iron(II) coordination polymer chains: Syntheses, structures, and magnetic characterizations of [Fe(aqin)2(μ2-M(CN)4)] (M = Ni(II), Pt(II), aqin = quinolin-8-amine)
,” Inorg. Chem.
53
, 97
–104
(2014
). 61.
N.
Hoshino
, F.
Iijima
, G. N.
Newton
, N.
Yoshida
, T.
Shiga
, H.
Nojiri
, A.
Nakao
, R.
Kumai
, Y.
Murakami
, and H.
Oshio
, “Three-way switching in a cyanide-bridged [CoFe] chain
,” Nat. Chem.
4
, 921
–926
(2012
). 62.
G.
Agustí
, A. B.
Gaspar
, M. C.
Muñoz
, and J. A.
Real
, “Thermal- and pressure-induced cooperative spin transition in the 2D and 3D coordination polymers {Fe(5-Br-pmd)z[M(CN)x]y} (M = AgI, AuI, NiII, PdII, PtII)
,” Inorg. Chem.
46
, 9646
–9654
(2007
). 63.
J. A.
Rodríguez-Velamazán
, M.
Castro
, E.
Palacios
, R.
Burriel
, T.
Kitazawa
, and T.
Kawasaki
, “A Two-step spin transition with a disordered intermediate state in a new two-dimensional coordination polymer
,” J. Phys. Chem. B
111
, 1256
–1261
(2007
). 64.
M.
Seredyuk
, A. B.
Gaspar
, V.
Ksenofontov
, M.
Verdaguer
, F.
Villain
, and P.
Gütlich
, “Thermal- and light-induced spin crossover in novel 2D Fe(II) metalorganic frameworks {Fe(4-PhPy)2[MII(CN)x]y}⋅sH2O spectroscopic, structural, and magnetic studies
,” Inorg. Chem.
48
, 6130
–6141
(2009
). 65.
F. J.
Valverde-Muñoz
, M.
Seredyuk
, M. C.
Muñoz
, K.
Znovjyak
, I. O.
Fritsky
, and J. A.
Real
, “Strong cooperative spin crossover in 2D and 3D FeII-MI,II Hofmann-like coordination polymers based on 2-fluoropyrazinel
,” Inorg. Chem.
55
, 10654
–10665
(2016
). 66.
S.
Chorazy
, T.
Charytanowicz
, D.
Pinkowicz
, J.
Wang
, K.
Nakabayashi
, S.
Klimke
, F.
Renz
, S.
Ohkoshi
, and B.
Sieklucka
, “Octacyanidorhenate(V) ion as an efficient linker for hysteretic two-step iron(II) spin crossover switchable by temperature, light, and pressure
,” Angew. Chem. Int. Ed.
59
, 15741
–15749
(2020
). 67.
V.
Niel
, J. M.
Martinez-Agudo
, M. C.
Muñoz
, A. B.
Gaspar
, and J. A.
Real
, “Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt)
,” Inorg. Chem.
40
, 3838
–3839
(2001
). 68.
C.
Bartual-Murgui
, L.
Salmon
, A.
Akou
, N. A.
Ortega-Villar
, H. J.
Shepherd
, M. C.
Muñoz
, G.
Molnár
, J. A.
Real
, and A.
Bousseksou
, “Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M = Pt, Pd, Ni)
,” Chem. Eur. J.
18
, 507
–516
(2012
). 69.
N. F.
Sciortino
, S. M.
Neville
, J.-F.
Létard
, B.
Moubaraki
, K. S.
Murray
, and C. J.
Kepert
, “Thermal- and light-induced spin-crossover bistability in a disrupted Hofmann-type 3D framework
,” Inorg. Chem.
53
, 7886
–7893
(2014
). 70.
L.
Piñeiro-López
, F. J.
Valverde-Muñoz
, M.
Seredyuk
, M. C.
Muñoz
, M.
Haukka
, and J. A.
Real
, “Guest induced strong cooperative one- and two-step spin transitions in highly porous iron(II) Hofmann-type metal-organic frameworks
,” Inorg. Chem.
56
, 7038
–7047
(2017
). 71.
S.
Cobo
, D.
Ostrovskii
, S.
Bonhommeau
, L.
Vendier
, G.
Molnár
, L.
Salmon
, K.
Tanaka
, and A.
Bousseksou
, “Single-laser-shot-induced complete bidirectional spin transition at room temperature in single crystals of [FeII(pyrazine)(Pt(CN)4)]
,” J. Am. Chem. Soc.
130
, 9019
–9024
(2008
). 72.
W.
Kosaka
, K.
Nomura
, K.
Hashimoto
, and S.
Ohkoshi
, “Observation of an Fe(II) spin-crossover in a cesium iron hexacyanochromate
,” J. Am. Chem. Soc.
127
, 8590
–8591
(2005
). 73.
K.
Boukheddaden
, M.
Nishino
, S.
Miyashita
, and F.
Varret
, “Unified theoretical description of the thermodynamical properties of spin crossover with magnetic interactions
,” Phys. Rev. B
72
, 014467
(2005
). 74.
D.
Papanikolaou
, S.
Margadonna
, W.
Kosaka
, S.
Ohkoshi
, M.
Brunelli
, and K.
Prassides
, “X-ray illumination induced Fe(II) spin crossover in the Prussian blue analogue cesium iron hexacyanochromate
,” J. Am. Chem. Soc.
128
, 8358
–8363
(2006
). 75.
D.
Papanikolaou
, W.
Kosaka
, S.
Margadonna
, H.
Kagi
, S.
Ohkoshi
, and K.
Prassides
, “Piezomagnetic behavior of the spin crossover prussian blue analogue CsFe[Cr(CN)6]
,” J. Phys. Chem. C
111
, 8086
–8091
(2007
). 76.
D. M.
Pajerowski
, J. E.
Gardner
, D. R.
Talham
, and M. W.
Meisel
, “Tuning the sign of photoinduced changes in magnetization: Spin transitions in the ternary metal Prussian blue analogue NaαNi1−xCox[Fe(CN)6]β⋅nH2O
,” J. Am. Chem. Soc.
131
(36
), 12927
–12936
(2009
). 77.
D. S.
Middlemiss
, D.
Portinari
, C. P.
Grey
, C. A.
Morrison
, and C. C.
Wilson
, “Spin crossover in the CsFeII[CrIII(CN)6] Prussian blue analog: Phonons and thermodynamics from hybrid functionals
,” Phys. Rev. B
81
, 184410
(2010
). 78.
H. L. B.
Boström
, A. B.
Cairns
, L.
Liu
, P.
Lazor
, and I. E.
Collings
, “Spin crossover in the Prussian blue analogue FePt(CN)6 induced by pressure or X-ray irradiation
,” Dalton Trans.
49
, 12940
–12944
(2020
). 79.
W.
Kosaka
, H.
Tokoro
, T.
Matsuda
, K.
Hashimoto
, and S.
Ohkoshi
, “Extremely gradual spin-crossover phenomenon in cyano-bridged Fe-Mo bimetallic assembly
,” J. Phys. Chem. C.
113
, 15751
–15755
(2009
). 80.
M.
Arai
, W.
Kosaka
, T.
Matsuda
, and S.
Ohkoshi
, “Observation of an Fe(II) spin-crossover in an iron octacyanoniobate-based magnet
,” Angew. Chem. Int. Ed.
47
, 6885
–6887
(2008
). 81.
D.
Pinkowicz
, M.
Rams
, M.
Mišek
, K. V.
Kamenev
, H.
Tomkowiak
, A.
Katrusiak
, and B.
Sieklucka
, “Enforcing multifunctionality: A pressure-induced spin-crossover photomagnet
,” J. Am. Chem. Soc.
137
, 8795
–8802
(2015
). 82.
R.-M.
Wei
, M.
Kong
, F.
Cao
, J.
Li
, T.-C.
Pu
, L.
Yang
, X.-L.
Zhang
, and Y.
Song
, “Water induced spin-crossover behaviour and magneto-structural correlation in octacyanotungstate(iv)-based iron(ii) complexes
,” Dalton Trans.
45
, 18643
–18652
(2016
). 83.
S.
Kawabata
, S.
Chorazy
, J. J.
Zakrzewski
, K.
Imoto
, T.
Fujimoto
, K.
Nakabayashi
, J.
Stanek
, B.
Sieklucka
, and S.
Ohkoshi
, “In situ ligand transformation for two-step spin crossover in FeII[MIV(CN)8]4− (M = Mo, Nb) cyanido-bridged frameworks
,” Inorg. Chem.
58
, 6052
–6063
(2019
). 84.
J. G.
Leipoldt
, L. D. C.
Bok
, and P. J.
Cilliers
, “The preparation of potassium octacyanomolybdate(IV) dihydrate
,” Z. Anorg. Allg. Chem.
409
, 343
–344
(1974
). 85.
G. M.
Sheldrick
, “Crystal structure refinement with SHELXL
,” Acta Cryst. C
71
, 3
–8
(2015
). 86.
O. V.
Dolomanov
, L. J.
Bourhis
, R. J.
Gildea
, J. A. K.
Howard
, and H.
Puschmann
, “OLEX2: A complete structure solution, refinement and analysis program
,” J. Appl. Crystallogr.
42
, 339
–341
(2009
). 87.
Y.
Umeta
, S.
Chorazy
, K.
Nakabayashi
, and S.
Ohkoshi
, “Synthesis of the single-crystalline form and first-principles calculations of photomagnetic copper(II) octacyanidomolybdate(IV)
,” Eur. J. Inorg. Chem.
, 2016
, 1980
–1988
. 88.
H.
Isci
and W.
Roy Mason
, “Electronic absorption and MCD spectra for octacyanometallate complexes M(CN)8n−, M = Mo(IV), W(IV), n=4 and Mo(V), W(V), n=3
,” Inorg. Chim. Acta
357
, 4065
–4072
(2004
). 89.
E.
Trzop
, D.
Zhang
, L.
Piñeiro-Lopez
, F. J.
Valverde-Muñoz
, M. C.
Muñoz
, L.
Palatinus
, L.
Guerin
, H.
Cailleau
, J. A.
Real
, and E.
Collet
, “First step towards a devil’s staircase in spin-crossover materials
,” Angew. Chem. Int. Ed.
55
, 8675
–8679
(2016
). 90.
J. E.
Clements
, J. R.
Price
, S. M.
Neville
, and C. J.
Kepert
, “Hysteretic four-step spin crossover within a three-dimensional porous Hofmann-like material
,” Angew. Chem. Int. Ed.
55
, 15105
–15109
(2016
). 91.
J.
Cruddas
and B. J.
Powell
, “Structure–property relationships and the mechanisms of multistep transitions in spin crossover materials and frameworks
,” Inorg. Chem. Front.
7
, 4424
–4437
(2020
). 92.
S. M.
Neville
, B. A.
Leita
, G. J.
Halder
, C. J.
Kepert
, B.
Moubaraki
, J.-F.
Létard
, and K. S.
Murray
, “Understanding the two-step spin-transition phenomenon in iron(II) 1D chain materials
,” Chem. Eur. J.
14
, 10123
–10133
(2008
). 93.
E.
Collet
, H.
Watanabe
, N.
Bréfuel
, L.
Palatinus
, L.
Roudaut
, L.
Toupet
, K.
Tanaka
, J.-P.
Tuchagues
, P.
Fertey
, S.
Ravy
, B.
Toudic
, and H.
Cailleau
, “Aperiodic spin state ordering of bistable molecules and its photoinduced erasing
,” Phys. Rev. Lett.
109
, 257206
(2012
). 94.
H.
Watanabe
, K.
Tanaka
, N.
Bréfuel
, H.
Cailleau
, J.-F.
Létard
, S.
Ravy
, P.
Fertey
, M.
Nishino
, S.
Miyashita
, and E.
Collet
, “Ordering phenomena of high-spin/low-spin states in stepwise spin-crossover materials described by the ANNNI model
,” Phys. Rev. B
93
, 014419
(2016
). © 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.