The development of sound-absorbing materials for noise reduction in daily life has been a prolonged issue that also applies to a recognized need for submarine anechoic tiles to stay independent from SONAR (SOund NAvigation Ranging). Here, we present an underwater stealth metasurface that uses split-orifice–conduit (SOC) hybrid resonators to significantly reduce its acoustic reflectance. A theoretical analysis of SOC elements provides an approach to quantifying acoustic characteristics using the transfer matrix method in a single metasurface. The findings confirm that we can tune the absorption with respect to a resonating frequency by adjusting geometrical parameters. Utilizing a hybrid mechanism that enables easy access to coupled resonances, we obtain broadband absorption spectra even in the presence of a covariant sound speed profile in the deep sea and a thermoviscous effect on unit cells of the metasurface. Such a metasurface will provide a further step toward developing feasible underwater stealth technologies for submarines and remains to be experimentally demonstrated.

1.
S. M.
Ivansson
, “
Sound absorption by viscoelastic coatings with periodically distributed cavities
,”
J. Acoust. Soc. Am.
119
,
3558
3567
(
2006
).
2.
S. M.
Ivansson
, “
Anechoic coatings obtained from two-and three-dimensional monopole resonance diffraction gratings
,”
J. Acoust. Soc. Am.
131
,
2622
2637
(
2012
).
3.
V.
Leroy
,
A.
Strybulevych
,
M.
Lanoy
,
F.
Lemoult
,
A.
Tourin
, and
J. H.
Page
, “
Superabsorption of acoustic waves with bubble metascreens
,”
Phys. Rev. B
91
,
020301
(
2015
).
4.
J. B.
Pendry
and
J.
Li
, “
An acoustic metafluid: Realizing a broadband acoustic cloak
,”
New J. Phys.
10
,
115032
(
2008
).
5.
S.
Zhang
,
C.
Xia
, and
N.
Fang
, “
Broadband acoustic cloak for ultrasound waves
,”
Phys. Rev. Lett.
106
,
024301
(
2011
).
6.
Y.
Chen
,
M.
Zheng
,
X.
Liu
,
Y.
Bi
,
Z.
Sun
,
P.
Xiang
,
J.
Yang
, and
G.
Hu
, “
Broadband solid cloak for underwater acoustics
,”
Phys. Rev. B
95
,
180104
(
2017
).
7.
B.-I.
Popa
,
L.
Zigoneanu
, and
S. A.
Cummer
, “
Experimental acoustic ground cloak in air
,”
Phys. Rev. Lett.
106
,
253901
(
2011
).
8.
L.
Zigoneanu
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Three-dimensional broadband omnidirectional acoustic ground cloak
,”
Nat. Mater.
13
,
352
355
(
2014
).
9.
J.
Wen
,
H.
Zhao
,
L.
Lv
,
B.
Yuan
,
G.
Wang
, and
X.
Wen
, “
Effects of locally resonant modes on underwater sound absorption in viscoelastic materials
,”
J. Acoust. Soc. Am.
130
,
1201
1208
(
2011
).
10.
H.
Yang
,
H.
Zhao
,
J.
Yin
, and
J.
Wen
, “
Hybrid meta-structure for broadband waterborne sound absorption
,”
AIP Adv.
9
,
125226
(
2019
).
11.
H.
Lee
,
M.
Jung
,
M.
Kim
,
R.
Shin
,
S.
Kang
,
W.-S.
Ohm
, and
Y. T.
Kim
, “
Acoustically sticky topographic metasurfaces for underwater sound absorption
,”
J. Acoust. Soc. Am.
143
,
1534
1547
(
2018
).
12.
P.
Cao
,
Y.
Zhang
,
S.
Zhang
,
W.
Ou
,
S. G.
Mosanenzadeh
, and
N. X.
Fang
, “
Switching acoustic propagation via underwater metasurface
,”
Phys. Rev. Appl.
13
,
044019
(
2020
).
13.
Y.
Chen
and
G.
Hu
, “
Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves
,”
Phys. Rev. Appl.
12
,
044046
(
2019
).
14.
Y.
Li
and
B. M.
Assouar
, “
Acoustic metasurface-based perfect absorber with deep subwavelength thickness
,”
Appl. Phys. Lett.
108
,
063502
(
2016
).
15.
F.
Wu
,
Y.
Xiao
,
D.
Yu
,
H.
Zhao
,
Y.
Wang
, and
J.
Wen
, “
Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels
,”
Appl. Phys. Lett.
114
,
151901
(
2019
).
16.
J.
Carbajo
,
S.
Ghaffari Mosanenzadeh
,
S.
Kim
, and
N.
Fang
, “
Sound absorption of acoustic resonators with oblique perforations
,”
Appl. Phys. Lett.
116
,
054101
(
2020
).
17.
H.
Ryoo
and
W.
Jeon
, “
Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence
,”
J. Appl. Phys.
123
,
115110
(
2018
).
18.
H.
Ryoo
and
W.
Jeon
, “
Perfect sound absorption of ultra-thin metasurface based on hybrid resonance and space-coiling
,”
Appl. Phys. Lett.
113
,
121903
(
2018
).
19.
A. A.
Winder
, “
II. Sonar system technology
,”
IEEE Trans. Sonics Ultrason.
22
,
291
332
(
1975
).
20.
M.
Villot
,
C.
Guigou
, and
L.
Gagliardini
, “
Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures
,”
J. Sound Vib.
245
,
433
455
(
2001
).
21.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
2009
).
22.
D.
Blackstock
,
Fundamentals of Physical Acoustics
(
John Wiley & Sons
,
2000
).
23.
K. V.
Mackenzie
, “
Nine-term equation for sound speed in the oceans
,”
J. Acoust. Soc. Am.
70
,
807
812
(
1981
).
24.
M. H.
Sharqawy
,
J. H.
Lienhard
, and
S. M.
Zubair
, “
Thermophysical properties of seawater: A review of existing correlations and data
,”
Desalin. Water Treat.
16
,
354
380
(
2010
).
25.
J.
Lastinger
and
I.
Groves
, Jr., “Speed of sound in four elastomers,” Technical Report (Naval Research Laboratory, Washington, DC, 1971).
26.
G. A.
Sabin
, “
Acoustic-impedance measurements at high hydrostatic pressures
,”
J. Acoust. Soc. Am.
40
,
1345
1353
(
1966
).
27.
C.
Zwikker
and
C. W.
Kosten
,
Sound Absorbing Materials
(
Elsevier Publishing Company
,
1949
).
28.
G.
Theocharis
,
O.
Richoux
,
V. R.
García
,
A.
Merkel
, and
V.
Tournat
, “
Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures
,”
New J. Phys.
16
,
093017
(
2014
).

Supplementary Material

You do not currently have access to this content.