Bending deformation of nematic liquid crystal elastomers (abbreviated as NLCEs) serves not only as a benchmark but also as a basic action of soft robots. It is, therefore, of fundamental importance to carry out a thorough analysis of finite bending of NLCEs. This paper studies such a problem by coating an NLCE to a hyperelastic substrate. The aim is to derive the analytical solution and investigate whether or not different constitutive models of NLCEs can drastically affect the theoretical predictions. For that purpose, four NLCE models are considered. The governing system of each case is established, and solving it leads to two different bending solutions. In order to determine which is the preferred one, we compare the total potential energy for both solutions and find that the two energy curves may have an intersection point at αc, a critical value of the bending angle, for some material parameters. In particular, the director n abruptly rotates π/2 from one solution to another at αc, which indicates a director reorientation. By applying the solution procedure to different material models, we find that the theoretically predicted behavior is dependent on the material models applied. Besides unraveling a possible director reorientation in a bent NLCE, the current work also suggests that an experimental investigation on bending may be a good way for selecting a suitable constitutive relation for practical applications.

1.
M.
Warner
and
E. M.
Terentjev
,
Liquid Crystal Elastomers
(
Clarendon Press
,
Oxford
,
2007
).
2.
N.
Torras
,
K. E.
Zinoviev
,
J. E.
Marshall
,
E. M.
Terentjev
, and
J.
Esteve
, “
Bending kinetics of a photo-actuating nematic elastomer cantilever
,”
Appl. Phys. Lett.
99
,
254102
(
2011
).
3.
J.
Wei
and
Y.
Yu
, “
Photodeformable polymer gels and crosslinked liquid-crystalline polymers
,”
Soft Matter
8
,
8050
(
2012
).
4.
K.
Urayama
,
S.
Honda
, and
T.
Takigawa
, “
Electrically driven deformations of nematic gels
,”
Phys. Rev. E
71
,
051713
(
2005
).
5.
K.
Urayama
,
S.
Honda
, and
T.
Takigawa
, “
Deformation coupled to director rotation in swollen nematic elastomers under electric fields
,”
Macromolecules
39
,
1943
1949
(
2006
).
6.
A.
Kaiser
,
M.
Winkler
,
S.
Krause
,
H.
Finkelmann
, and
A. M.
Schmidt
, “
Magnetoactive liquid crystal elastomer nanocomposites
,”
J. Mater. Chem.
19
,
538
543
(
2009
).
7.
M.
Winkler
,
A.
Kaiser
,
S.
Krause
,
H.
Finkelmann
, and
A. M.
Schmidt
, “
Liquid crystal elastomers with magnetic actuation
,”
Macromol. Symp.
291–292
,
186
192
(
2010
).
8.
A.
Agrawal
,
T. H.
Yun
,
S. L.
Pesek
,
W. G.
Chapman
, and
R.
Verduzco
, “
Shape-responsive liquid crystal elastomer bilayers
,”
Soft Matter
10
,
1411
1415
(
2014
).
9.
Z.
Wang
,
H.
Tian
,
Q.
He
, and
S.
Cai
, “
Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds
,”
ACS Appl. Mater. Interfaces
9
,
33119
33128
(
2017
).
10.
P. G.
de Gennes
,
M.
Hebert
, and
R.
Kant
, “
Artificial muscles based on nematic gels
,”
Macromol. Symp.
113
,
39
49
(
1997
).
11.
H.
Tian
,
Z.
Wang
,
Y.
Chen
,
J.
Shao
,
T.
Gao
, and
S.
Cai
, “
Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle
,”
ACS Appl. Mater. Interfaces
10
,
8307
8316
(
2018
).
12.
A.
DeSimone
,
P.
Gidoni
, and
G.
Noselli
, “
Liquid crystal elastomer stripes as soft crawlers
,”
J. Mech. Phys. Solids
84
,
154
272
(
2015
).
13.
Z.
Wang
,
K.
Li
,
Q.
He
, and
S.
Cai
, “
A light-powered ultralight tensegrity robot with high deformability and load capacity
,”
Adv. Mater.
31
,
1806849
(
2019
).
14.
J. A.
Lv
,
Y.
Liu
,
J.
Wei
,
E.
Chen
,
L.
Qin
, and
Y.
Yu
, “
Photocontrol of fluid slugs in liquid crystal polymer microactuators
,”
Nature
537
,
179
184
(
2016
).
15.
Z.
Wang
,
Q.
He
,
Y.
Wang
, and
S.
Cai
, “
Programmable actuation of liquid crystal elastomers via living exchange reaction
,”
Soft Matter
15
,
2811
(
2019
).
16.
P.
Bladon
,
E.
Terentjev
, and
M.
Warner
, “
Transitions and instabilities in liquid crystal elastomers
,”
Phys. Rev. E
47
(
6
),
R3838
R3840
(
1993
).
17.
A.
DeSimone
and
G.
Dolzmann
, “
Macroscopic response of nematic elastomers via relaxation of a class of so (3)-invariant energies
,”
Arch. Ration. Mech. Anal.
161
(
3
),
181
204
(
2002
).
18.
D. R.
Anderson
,
D. E.
Carlson
, and
E.
Fried
, “
A continuum-mechanical theory for nematic elastomers
,”
J. Elast.
56
(
1
),
33
58
(
1999
).
19.
G. C.
Verwey
and
M.
Warner
, “
Compositional fluctuations and semisoftness in nematic elastomers
,”
Macromolecules
30
,
4189
4195
(
1997
).
20.
D. E.
Carlson
,
E.
Fried
, and
S.
Sellers
, “
Force-free states, relative strain, and soft elasticity in nematic elastomers
,”
J. Elast.
69
,
161
180
(
2002
).
21.
E.
Fried
and
S.
Sellers
, “
Free-energy density functions for nematic elastomers
,”
J. Mech. Phys. Solids
52
,
1671
1689
(
2004
).
22.
A.
DeSimone
and
L.
Teresi
, “
Elastic energies for nematic elastomers
,”
Eur. Phys. J. E
29
,
191
204
(
2009
).
23.
Y. C.
Chen
and
E.
Fried
, “
Uniaxial nematic elastomers: Constitutive framework and a simple application
,”
Proc. R. Soc. A
462
,
1295
1314
(
2006
).
24.
V.
Agostiniani
and
A.
DeSimone
, “
Ogden-type energies for nematic elastomers
,”
Int. J. Nonlinear Mech.
47
,
402
417
(
2012
).
25.
Y.
Zhang
,
C.
Xuan
,
Y.
Jiang
, and
Y.
Huo
, “
Continuum mechanical modeling of liquid crystal elastomers as dissipative ordered solids
,”
J. Mech. Phys. Solids
126
,
285
303
(
2019
).
26.
I.
Kundler
and
H.
Finkelmann
, “
Strain-induced director reorientation in nematic liquid single crystal elastomers
,”
Macromol. Rapid Commun.
16
,
679
686
(
1995
).
27.
G. C.
Verwey
,
M.
Warner
, and
E. M.
Terentjev
, “
Elastic instability and stripe domains in liquid crystalline elastomers
,”
J. Phys. II
6
,
1273
1290
(
1996
).
28.
S. V.
Fridrikh
and
E. M.
Terentjev
, “
Polydomain-monodomain transition in nematic elastomers
,”
Phys. Rev. E
60
,
1847
1857
(
1999
).
29.
S.
Conti
,
A.
DeSimone
, and
G.
Dolzmann
, “
Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers
,”
Phys. Rev. E
66
(
6
),
061710
(
2002
).
30.
S.
Conti
,
A.
DeSimone
, and
G.
Dolzmann
, “
Soft elastic response of stretched sheets of nematic elastomers: A numerical study
,”
J. Mech. Phys. Solids
50
(
7
),
1431
1451
(
2002
).
31.
E.
Fried
and
V.
Korchagin
, “
Striping of nematic elastomer
,”
Int. J. Solids Struct.
39
,
3451
3467
(
2002
).
32.
E.
Fried
and
S.
Sellers
, “
Soft elasticity is not necessary for striping in nematic elastomers
,”
J. Appl. Phys.
100
,
043521
(
2006
).
33.
A.
Petelin
and
M.
Čopič
, “
Observation of a soft mode of elastic instability in liquid crystal elastomers
,”
Phys. Rev. Lett.
103
,
077801
(
2009
).
34.
Z.
Wu
and
Z.
Zhong
, “
A nonlinear theory accounting for stress-induced orientational transitions in nematic gels
,”
Acta Mech.
224
,
1243
1250
(
2013
).
35.
Y.
Zhang
,
Z.
Zhang
, and
Y.
Huo
, “
Nucleation and critical conditions for stripe domains in monodomain nematic elastomer sheets under uniaxial loading
,”
J. Mech. Phys. Solids
144
,
104110
(
2020
).
36.
Q.
He
,
Y.
Zheng
,
Z.
Wang
,
X.
He
, and
S.
Cai
, “
Anomalous inflation of a nematic balloon
,”
J. Mech. Phys. Solids
142
,
104013
(
2020
).
37.
L. A.
Mihai
and
A.
Goriely
, “
Likely striping in stochastic nematic elastomers
,”
Math. Mech. Solids
25
,
1
22
(
2020
).
38.
E.
Fried
and
B. C.
Roy
, “
Disclinations in a homogenously deformed nematic elastomer
,”
Contin. Mech. Thermodyn.
18
,
259
280
(
2006
).
39.
T. J.
Pence
, “
Soft elastic bending response of a nematic elastomer described by a microstructurally relaxed free energy
,”
Contin. Mech. Thermodyn.
18
,
281
304
(
2006
).
40.
Y.
Liu
,
W.
Ma
, and
H.-H.
Dai
, “
On a consistent finite-strain plate model of nematic liquid crystal elastomers
,”
J. Mech. Phys. Solids
145
,
104169
(
2020
).
41.
R. S.
Rivlin
, “
Large elastic deformations of isotropic materials. V. The problem of flexure
,”
Proc. R. Soc. A
195
(
1043
),
463
473
(
1949
).
42.
R. W.
Ogden
,
Non-Linear Elastic Deformations
(
Dover Publications, Inc.
,
1997
).
43.
Wolfram Research Inc., Mathematica: Version 12, Wolfram Research Inc., Champaign, 2019.
44.
M.
Warner
and
E. M.
Terentjev
, “
Nematic elastomers–a new state of matter?
,”
Prog. Polym. Sci.
21
,
853
891
(
1996
).
45.
H.
Finkelmann
,
I.
Kundler
,
E. M.
Terentjev
, and
M.
Warner
, “
Critical stripe domain instability of nematic elastomers
,”
J. Phys. II
7
,
1059
1069
(
1997
).
46.
E.
Fried
and
R. E.
Todres
, “
Disclinated states in nematic elastomers
,”
J. Mech. Phys. Solids
50
,
2691
2716
(
2002
).
47.
G. R.
Mitchell
,
F.
Davis
, and
W.
Guo
, “
Strain-induced transitions in liquid-crystal elastomers
,”
Phys. Rev. Lett.
71
,
2947
2950
(
1993
).
You do not currently have access to this content.