This paper presents the experimental and numerical results about the influence of nitrogen (N2) and oxygen (O2) admixture on the development of a helium (He) atmospheric-pressure plasma jet (APPJ) in a long dielectric tube. The results revealed that the jet length and the propagation velocity are strongly affected by introducing N2 or O2 into the He flow. Specifically, it was observed that a higher N2/O2 admixture led to the decrease in the density of both energetic and relative low-energy electrons outside the grounded electrode, which corresponds to the shortening of the jet length. In the He/O2 mixture, the electrons are easily captured by O2/O in the region of the plasma bulk. In the He/N2 mixture, the jet propagation characteristics will change since N2 has many low-level excitation states that consumed a large number of energetic electrons. The simulation shows that the magnitude of the axial electric field in the jet head depends strongly on the amount of N2 and/or O2 in the gas flow. In both cases, the peak electric field is on the order of 5 kV/cm, which is significantly higher than that in pure helium of 3 kV/cm even if the admixture is low (less than 4% N2 or 2% O2 in this work). Positive charges of higher density in the jet head are needed to induce a stronger electric field for the jet propagating in N2(x%)/He and O2(x%)/He mixtures compared with that in pure He.

1.
M.
Keidar
,
Plasma Sources Sci. Technol.
24
,
033001
(
2015
).
2.
D.
Graves
,
S.
Hamaguchi
, and
D.
O’Connell
,
Biointerphases
10
,
029301
(
2015
).
3.
M.
Laroussi
,
IEEE Trans. Plasma Sci.
43
,
703
(
2015
).
4.
X.
Yan
,
J. T.
Ouyang
,
C. Y.
Zhang
,
Z. F.
Shi
,
B.
Wang
, and
K.
Ostrikov
,
Chin. Neurosurgical J.
5
,
25
(
2019
).
5.
X.
Yan
,
C. Y.
Zhang
,
J. T.
Ouyang
,
Z. Z.
Meng
,
Z. F.
Shi
,
Y. J.
Wang
,
Y.
Chen
,
F.
Yuan
, and
K.
Ostrikov
,
J. Phys. D: Appl. Phys.
52
,
135401
(
2019
).
6.
M. G.
Kong
,
M.
Keidar
, and
K.
Ostrikov
,
J. Phys. D: Appl. Phys.
44
,
174018
(
2011
).
7.
K.
Ostrikov
,
E. C.
Neyts
, and
M.
Meyyappan
,
Adv. Phys.
62
,
113
(
2013
).
8.
D.
Mariotti
,
J.
Patel
,
V.
Švrček
, and
P.
Maguire
,
Plasma Process. Polym.
9
,
1074
(
2012
).
9.
M.
Mozetitč
,
G.
Primc
,
A.
Vesel
,
R.
Zaplotnik
,
M.
Modic
,
I.
Junkar
,
N.
Recek
,
M.
Klanjšek-Gunde
,
L.
Guhy
,
M. K.
Sunkara
,
M. C.
Assensio
,
S.
Milošević
,
M.
Lehocky
,
V.
Sedlarik
,
M.
Gorjanc
,
K.
Kutasi
, and
K.
Stana-Kleinschek
,
Plasma Sources Sci. Technol.
24
,
015026
(
2015
).
10.
Y. C.
Hong
and
H. S.
Uhm
,
Phys. Plasmas
14
,
053503
(
2007
).
11.
X. K.
Pei
,
J.
Kredl
,
X. P.
Lu
, and
J. F.
Kolb
,
J. Phys. D: Appl. Phys.
51
,
384001
(
2018
).
12.
X. C.
Li
,
Y. Y.
Chang
,
P. Y.
Jia
,
L. F.
Xu
, and
T. Z.
Fang
,
Phys. Plasmas
19
,
093504
(
2012
).
13.
D.
Breden
,
K.
Miki
, and
L. L.
Raja
,
Plasma Sources Sci. Technol.
21
,
034011
(
2012
).
14.
S.
Kelly
and
M. M.
Turner
,
Plasma Sources Sci. Technol.
23
,
065013
(
2014
).
15.
J. P.
Boeuf
,
L. L.
Yang
, and
L. C.
Pitchford
,
J. Phys. D: Appl. Phys.
46
,
015201
(
2013
).
16.
G. V.
Naidis
,
J. Phys. D: Appl. Phys.
43
,
402001
(
2010
).
17.
F.
Massines
,
A.
Rabehi
,
P.
Decomps
,
R. B.
Gadri
,
P.
Ségur
, and
C.
Mayoux
,
J. Appl. Phys.
83
,
2950
(
1998
).
18.
X. Y.
Liu
,
M. B.
He
, and
D. W.
Liu
,
Phys. Plasmas
22
,
043513
(
2015
).
19.
S.
Wu
,
Q. J.
Huang
,
Z.
Wang
, and
X. P.
Lu
,
IEEE Trans. Plasma Sci.
39
,
2286
(
2011
).
20.
S.
Wu
,
X.
Lu
, and
Y.
Pan
,
Phys. Plasmas
21
,
073509
(
2014
).
21.
H. X.
Hu
,
F.
He
,
P.
Zhu
, and
J. T.
OuYang
,
Plasma Sci. Technol.
20
,
054010
(
2018
).
22.
P.
Zhu
,
B.
Li
,
Z. C.
Duan
, and
J. T.
OuYang
,
J. Phys. D: Appl. Phys.
51
,
405202
(
2018
).
23.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
24.
P.
Zhang
and
U.
Kortshagen
,
J. Phys. D: Appl. Phys.
39
,
153
(
2006
).
25.
X. H.
Yuan
and
L. L.
Raja
,
IEEE Trans. Plasma Sci.
31
,
495
(
2003
).
26.
Y.
Sakiyama
and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
39
,
3451
(
2006
).
27.
Y. H.
Wang
and
D. Z.
Wang
,
Phys. Plasmas
12
,
023503
(
2005
).
28.
K.
Urabe
,
T.
Morita
,
K.
Tachibana
, and
B. N.
Ganguly
,
J. Phys. D: Appl. Phys.
43
,
095201
(
2010
).
29.
See www.lxcat.net for “IST-Lisben Database” (last accessed July 21, 2017).
30.
J. W.
Shon
and
M. J.
Kushner
,
J. Appl. Phys.
75
,
1883
(
1994
).
31.
J.
Stevefelt
,
J. M.
Pouvesle
, and
A.
Bouchoule
,
J. Chem. Phys.
76
,
4006
(
1982
).
32.
C.
Lazarou
,
C.
Anastassiou
,
I.
Topala
,
A. S.
Chiper
,
I.
Mihaila
,
V.
Pohoata
, and
G. E.
Georghiou
,
Plasma Sources Sci. Technol.
27
,
105007
(
2018
).
33.
J. M.
Pouvesle
,
A.
Bouchoule
, and
J.
Stevefelt
,
J. Chem. Phys.
77
,
817
(
1982
).
34.
D. S.
Stafford
and
M. J.
Kushner
,
J. Appl. Phys.
96
,
2451
(
2004
).
35.
T.
Martens
,
A.
Bogaerts
,
W. J. M.
Brok
, and
J. V.
Dijk
,
Appl. Phys. Lett.
92
,
041504
(
2008
).
36.
Q.
Wang
,
D. J.
Economou
, and
V. M.
Donnelly
,
J. Appl. Phys.
100
,
023301
(
2006
).
37.
T. J.
Sommerer
and
M. J.
Kushner
,
J. Appl. Phys.
71
,
1654
(
1992
).
38.
G. S.
Ni
,
M. Y.
Qian
,
C. Y.
Yang
,
S. Q.
Liu
, and
D. Z.
Wang
,
Plasma Sci. Technol.
18
,
751
(
2016
).
39.
A.
Bourdon
,
T.
Darny
,
F.
Pechereau
,
J. M.
Pouvesle
,
P.
Viegas
,
S.
Iséni
, and
E.
Robert
,
Plasma Sources Sci. Technol.
25
,
035002
(
2016
).
40.
G. Y.
Park
,
Y. J.
Hong
,
H. W.
Lee
,
J. H.
Sim
, and
J. K.
Lee
,
Plasma Process. Polym.
7
,
281
(
2010
).
41.
J. W.
McConkey
,
C. P.
Malone
,
P. V.
Johnson
,
C.
Winstead
,
V.
McKoy
, and
I.
Kanik
,
Phys. Rep.
466
,
1
(
2008
).
42.
K. R.
Stalder
,
R. J.
Vidmar
,
G.
Nersisyan
, and
W. G.
Graham
,
J. Appl. Phys.
99
,
093301
(
2006
).
43.
T.
Murakami
,
K.
Niemi
,
T.
Gans
,
D.
O’Connell
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
22
,
015003
(
2013
).
44.
L. M.
Zhou
,
B.
Xue
,
U.
Kogelschatz
, and
B.
Eliasson
,
Plasma Chem. Plasma Process.
18
,
375
(
1998
).
45.
D. X.
Liu
,
M. Z.
Rong
,
X. H.
Wang
,
F.
Iza
,
M. G.
Kong
, and
P.
Bruggeman
,
Plasma Process. Polym.
7
,
846
(
2010
).
46.
Z.
Xiong
,
E.
Robert
,
V.
Sarron
,
J. M.
Pouvesle
, and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
46
,
155203
(
2013
).
47.
P.
Zhu
,
Z. Z.
Meng
,
H. X.
Hu
, and
J. T.
Ouyang
,
Phys. Plasmas
24
,
103512
(
2017
).
48.
L. J.
Liu
,
Y.
Zhang
,
W. J.
Tian
,
Y.
Meng
, and
J. T.
Ouyang
,
Appl. Phys. Lett.
104
,
244108
(
2014
).
49.
R. X.
Wang
,
K.
Zhang
,
Y.
Shen
,
C.
Zhang
,
W. D.
Zhu
, and
T.
Shao
,
Plasma Sources Sci. Technol.
25
,
015020
(
2016
).
50.
Q.
Xiong
,
X.
Lu
,
J.
Liu
,
Y.
Xian
,
Z.
Xiong
,
F.
Zou
,
C.
Zou
,
W.
Gong
,
J.
Hu
,
K.
Chen
,
X.
Pei
,
Z.
Jiang
, and
Y.
Pan
,
J. Appl. Phys.
106
,
083302
(
2009
).
51.
S. J.
Kim
,
S. Y.
Yoon
, and
G. H.
Kim
,
IEEE Trans. Plasma Sci.
43
,
2054
(
2015
).
52.
A. J.
Yang
,
X. H.
Wang
,
M. Z.
Rong
,
D. X.
Liu
,
F.
Iza
, and
M. G.
Kong
,
Phys. Plasmas
18
,
113503
(
2011
).
53.
A. J.
Yang
,
D. X.
Liu
,
M. Z.
Rong
,
X. H.
Wang
, and
M. G.
Kong
,
Phys. Plasmas
21
,
083501
(
2014
).
54.
X. X.
Duan
,
F.
He
, and
J. T.
Ouyang
,
Appl. Phys. Lett.
96
,
231502
(
2010
).
You do not currently have access to this content.