Due to their unique optical properties, plasmonic materials are widely used in nonlinear optics, nanophotonics, optoelectronics, photocatalysis, biosensing, information storage, etc. Researchers usually need to know the detailed permittivity behavior at the vicinity of surface plasmons’ excitation wavelengths, which in turn are located near the zero points of the real part of the permittivity called epsilon-near-zero (ENZ). We hereby introduce a spectral fitting method to quickly obtain the materials' permittivity at the ENZ region and summarize the experiences of selecting dispersion models and optimizing model parameters. Specifically, we have made a detailed description of the optical constant fitting process for a series of plasmonic materials such as heavily doped semiconductors, transparent conductive oxides, organic conductive materials, two-dimensional materials, and sandwiched composites. Hopefully, to provide specific data and theoretical support for researchers in the field of photoelectric properties of plasmonic materials.

1.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
,
Nature
424
,
824
(
2003
).
2.
A. J.
Haes
and
R. P. V.
Duyne
,
Anal. Bioanal. Chem.
379
,
920
(
2004
).
3.
D.
Traviss
,
R.
Bruck
,
B.
Mills
,
M.
Abb
, and
O. L.
Muskens
,
Appl. Phys. Lett.
102
,
121112
(
2013
).
4.
B.
Witzigmann
,
M.
Osiński
,
F.
Henneberger
,
Y.
Arakawa
,
P.
Biagioni
, and
E.
Sakat
,
Phys. Simul. Optoelectron. Devices XXIII
9357
,
93570G
(
2015
).
5.
G. V.
Naik
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Adv. Mater.
25
,
3264
(
2013
).
6.
Y.
Jianhan
,
A. A.
Hossam
,
W.
Zhewei
,
W.
Ke
,
W.
Chen
,
S.
Kuan
,
M. Y.
Yang
, and
Y.
Hui
,
ACS Appl. Mater. Interfaces
11
,
39132
(
2019
).
7.
A. N.
Grigorenko
,
M.
Polini
, and
K. S.
Novoselov
,
Nat. Photonics
6
,
749
(
2012
).
8.
J. T.
Guske
,
J.
Brown
,
A.
Welsh
, and
S.
Franzen
,
Opt. Express
20
,
23215
(
2012
).
9.
J. D.
Jackson
,
Phys. Today
52
(
10
),
78
(
1999
).
10.
I.
Liberal
and
N.
Engheta
,
Nat. Photonics
11
,
149
(
2017
).
12.
M.
Silveirinha
and
N.
Engheta
,
Phys. Rev. Lett.
97
,
157403
(
2006
).
13.
A.
Alù
,
M.
Silveirinha
,
A.
Salandrino
, and
N.
Engheta
,
Phys. Rev. B
75
,
155410
(
2007
).
14.
M.
Alidoust
,
K.
Halterman
,
D.
Pan
,
M.
Willatzen
, and
J.
Akola
,
Phys. Rev. B
102
,
115307
(
2020
).
15.
J.
Park
,
J. H.
Kang
,
X.
Liu
, and
M. L.
Brongersma
,
Sci. Rep.
5
,
15754
(
2015
).
16.
O.
Reshef
,
I. D.
Leon
,
M. Z.
Alam
, and
R. W.
Boyd
,
Nat. Rev. Mater.
4
,
535
(
2019
).
18.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
(John Wiley & Sons,
2007
).
19.
W. L.
Bade
,
J. Chem. Phys.
27
,
1280
(
1957
).
20.
F.
Höfling
,
T.
Franosch
, and
E.
Frey
,
Phys. Rev. Lett.
96
,
165901
(
2006
).
21.
B. V.
Blanckenhagen
,
D.
Tonova
, and
J.
Ullmann
,
Appl. Opt.
41
,
3137
(
2002
).
22.
S.
D'Elia
,
N.
Scaramuzza
,
F.
Ciuchi
,
C.
Versace
,
G.
Strangi
, and
R.
Bartolino
,
Appl. Surf. Sci.
255
,
7203
(
2009
).
23.
H. G.
Tomkins
and
E. A.
Irene
,
Handbook of Ellipsometry
(William Andrew,
2005
).
24.
H. A.
Macleod
,
Thin-Film Optical Filters
(Institute of Physics,
2001
).
25.
W.
Shen
,
X.
Liu
,
Y.
Zhu
,
T.
Zou
, and
P.
Gu
,
Pan Tao T'i Hsueh Pao/Chin. J. Semicond.
26
(
2
),
335
(
2005
).
26.
P.
Aspden
,
J. Oper. Res. Soc.
28
,
125
(
1977
).
27.
R. M. A.
Azzam
,
N. M.
Bashara
, and
S. S.
Ballard
,
Phys. Today
31
(
11
),
72
(
1978
).
28.
S.
Yueyan
,
P.
Wenhui
, and
Y.
Zhiqiang
,
Vac. Sci. Technol.
14
(
1
),
35
(
1994
).
29.
H. Y.
Jin
and
L. C.
Zhang
,
Chin. J. Semicond.
22
(
9
),
1122
(
2001
).
30.
K.
Chaudhuri
,
M.
Alhabeb
,
Z.
Wang
,
V. M.
Shalaev
,
Y.
Gogotsi
, and
A.
Boltasseva
,
ACS Photonics
5
,
1115
(
2018
).
31.
F.
Wu
,
P.
Li
,
K.
Sun
,
Y.
Zhou
, and
J.
Ouyang
,
Adv. Electron. Mater.
3
,
1700047
(
2017
).
32.
V. M.
Agranovich
and
V. E.
Kravtsov
,
Solid State Commun.
55
,
85
(
1985
).
33.
X.
Fang
,
C. L.
Mak
,
J.
Dai
,
K.
Li
,
H.
Ye
, and
C. W.
Leung
,
ACS Appl. Mater. Interfaces
6
,
15743
(
2014
).
34.
C.
Chen
,
Z.
Wang
,
K.
Wu
,
H.
Chong
,
Z.
Xu
, and
H.
Ye
,
ACS Appl. Mater. Interfaces
10
,
14886
(
2018
).
You do not currently have access to this content.