Among numerous melt structure model representations, the most relevant for liquid heat-resistant nickel alloys description is the quasicrystalline model of a microinhomogeneous structure, in which it is assumed that multicomponent nickel melts consist of clusters and intercluster space. Clusters inherit the short-range order of the atomic structure from various phases of the initial solid metal crystalline structure. Heating the melt to a certain temperature and/or increasing a period of its isothermal holding at constant pressure led to a second-order phase liquid–liquid phase transition (LLT). As a result, atomic associations that are more balanced and uniformly distributed over the melt volume are formed. Structural changes in nickel superalloy melts are irreversible and have a significant effect on the formation of the structure and properties of a solid metal during crystallization. Structural LLT changes in multicomponent nickel melts are the basis for a scientific substantiation of the technological modes of smelting, which contributes to an improvement in the technological properties of melts, a reduction of metallurgical defects, a rational use of expensive elements and foundry waste, as well as a significant improvement in the quality of metal products. This work is devoted to the experimental determination of the LLT transition in superalloy melts by the noninvasive electromagnetic method.

1.
B. A.
Baum
,
G. A.
Khasin
, and
G. V.
Tyagunov
,
Liquid Steel
(
Metallurgy
,
Moscow
,
1984
) (in Russian).
2.
V. S.
Tsepelev
,
V. V.
Konashkov
, and
B. A.
Baum
,
Properties of Metal Melts
(
USTU
,
Yekaterinburg
,
2008
) (in Russian).
3.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
, and
P. F.
McMillan
,
Science
275
,
322
(
1997
).
4.
Y. B.
Wang
,
G.
Zhao
,
C. S.
Liu
, and
Z. G.
Zhu
,
Phys. B Condens. Matter
405
,
785
(
2010
).
5.
C.
Zhou
,
L.
Hu
,
Q.
Sun
,
J.
Qin
,
X.
Bian
, and
Y.
Yue
,
Appl. Phys. Lett.
103
,
171904
(
2013
).
6.
Y. Q.
Wang
,
Y. Q.
Wu
,
J. T.
Liu
, and
X. F.
Bian
,
Chin. Phys. Lett.
23
,
2513
(
2006
).
7.
L. W.
Ying
,
B. D.
Chen
, and
Z.
Shao
,
J. Non-Cryst. Solids
490
,
31
(
2018
).
8.
F. S.
Yinab
,
X. F.
Suna
,
H. R.
Guana
, and
Z. Q.
Hua
,
J. Alloys Compd.
364
,
225
(
2004
).
9.
H.
Fredriksson
and
E.
Fredriksson
,
Mater. Sci. Eng. A
413–414
,
455
(
2005
).
10.
N. A.
Vatolin
,
E. A.
Pastukhov
,
V. L.
Lisin
,
V. M.
Denisov
, and
S. V.
Kachin
,
Diffraction Studies of the Structure of High-Temperature Melts
(
UB RAS
,
Yekaterinburg
,
2003
) (in Russian).
11.
A. M.
Skrebtsov
,
Reporter PSTU
18
,
61
(
2008
) (in Russian).
12.
A. G.
Tyagunov
,
E. E.
Baryshev
, and
N. N.
Stepanova
,
The Influence of the Melt Structure on the Properties of Heat-Resistant Nickel Alloys in the Solid State
(
UB RAS
,
Yekaterinburg
,
2010
) (in Russian).
13.
G. V.
Tyagunov
,
E. E.
Baryshev
,
V. S.
Tsepelev
,
T. K.
Kostina
,
E. E.
Tretiakova
, and
E. V.
Kolotukhin
,
Metallic Liquids. Steel and Alloys
(
Ural Federal University
,
Yekaterinburg
,
2016
) (in Russian).
14.
F. Q.
Zu
,
X. F.
Li
,
L. J.
Guo
,
H.
Yang
,
X. B.
Qin
, and
Z. G.
Zhu
,
Phys. Lett. A
324
,
472
(
2004
).
15.
P.
McMillan
,
Nature
403
,
151
(
2000
).
16.
P. S.
Popel
and
V. E.
Sidorov
,
Mater. Sci. Eng. A
226–228
,
237
(
1997
).
17.
K. R.
Rao
,
Curr. Sci. India
80
,
1098
(
2001
).
18.
J. L.
Yarger
and
G. H.
Wolf
,
Science
306
,
820
(
2004
).
19.
I.
Kaban
,
T.
Halm
, and
W.
Honyer
,
J. Non-Cryst. Solids
288
,
96
(
2001
).
20.
M.
Emuna
,
S.
Matityahu
,
E.
Yahel
,
G.
Makov
, and
Y.
Greenberg
,
J. Chem. Phys.
148
,
034505
(
2018
).
21.
F. Q.
Zu
,
Z. G.
Zhu
,
L. J.
Guo
,
X. B.
Qin
,
H.
Yang
, and
W. J.
Shan
,
Phys. Rev. Lett.
89
,
125505
(
2002
).
22.
L.
Wang
,
X. F.
Bian
, and
J. T.
Liu
,
Phys. Lett. A
326
,
429
(
2004
).
23.
X.
Cui
,
Q. D.
Zhang
,
X. Y.
Li
, and
F. Q.
Zu
,
J. Non-Cryst. Solids
452
,
336
(
2016
).
24.
Y.
He
,
J.
Li
,
J. Y.
Wang
,
H.
Kou
, and
E.
Beagunon
,
Appl. Phys. A Mater.
123
,
391
(
2017
).
25.
A. G.
Tyagunov
,
E. E.
Baryshev
,
B. A.
Baum
,
V. V.
Konashkov
, and
A. S.
Fedorov
,
Russ. Metall
3
,
66
(
2006
) (in Russian).
26.
Z. H.
Chen
,
X. D.
Bao
,
Z. J.
Huang
,
G.
Wang
,
X. B.
Zhu
, and
Y. F.
Sun
,
Met. Mater.
53
,
79
(
2016
).
27.
F. Q.
Zu
,
Z. G.
Zhu
,
L. J.
Guo
,
B.
Zhang
,
J. P.
Shui
, and
C. S.
Liu
,
Phys. Rev. B
64
,
180203
(
2001
).
28.
Z. H.
Chen
,
F. Q.
Zu
,
X. F.
Li
,
J.
Yu
,
Y.
Xi
, and
R. R.
Shen
,
J. Phys. Condens. Matter.
19
,
116106
(
2007
).
29.
A. M.
Povadator
,
V. V.
Vyukhin
,
V. S.
Tsepelev
, and
A. G.
Tyagunov
, patent RU2299425C1 (
2007
) (in Russian).
30.
A. G.
Tyagunov
,
E. E.
Baryshev
,
G. V.
Tyagunov
,
V. S.
Mushnikov
, and
V. S.
Tsepelev
,
Steel Transl.
47
(
4
),
250
(
2017
).
31.
M.
Li
,
P.
Jia
,
R.
Liu
,
H.
Geng
,
S.
Du
,
M.
Wang
,
H.
Luo
, and
S.
Lu
,
J. Mater.
67
,
948
(
2015
).
32.
X. F.
Li
,
F. Q.
Zu
,
L. J.
Liu
,
J.
Yu
, and
B.
Zhou
,
Phys. Chem. Liq.
45
,
531
(
2007
).
33.
F. Q.
Zu
,
D. D.
Yang
,
X.
Lu
, and
L.
Li
,
Phys. Chem. Liq.
50
(
1
),
1
(
2011
).
34.
Y.
Xi
,
F. Q.
Zu
,
X. F.
Li
,
Y.
JIn
,
L. J.
Liu
,
Q.
Li
, and
Z. H.
Chen
,
Phys. Lett. A
329
,
221
(
2004
).
35.
Q.
Li
,
F. Q.
Zu
,
X. F.
Li
, and
Y.
Xi
,
Mod. Phys. Lett. B
20
,
151
(
2006
).
36.
Z. M.
Wang
,
H. R.
Geng
,
G. R.
Zhou
,
Z. Q.
Guo
, and
X. Y.
Teng
,
Int. J. Cast Met. Res.
24
,
65
(
2011
).
37.
X.
Li
,
F.
Zu
,
J.
Yu
, and
B.
Zhou
,
Phase Transit.
81
,
43
(
2008
).
38.
S. V.
Golubev
,
O. A.
Korzhavina
,
P. S.
Popel
,
V. I.
Kononenko
,
I. G.
Brodova
,
I. V.
Polents
, and
T. B.
Shubina
,
Russ. Metall+
1
,
46
(
1991
) (in Russian).
39.
F. Q.
Zu
,
J.
Chen
,
X. F.
Li
,
L. N.
Mao
, and
Y. C.
Liu
,
J. Mater. Res.
24
(
7
),
2378
(
2009
).
40.
E. N.
Kablov
,
Cast Blades of Gas Turbine Engines. Alloys, Technology, Coatings
(
MISIS
,
Moscow
,
2001
) (in Russian).
41.
V. P.
Kuznetsov
,
V. P.
Lesnikov
, and
N. A.
Popov
,
Structure and Properties of Heat-Resistant Nickel Alloys
(
USTU
,
Yekaterinburg
,
2016
) (in Russian).
42.
E. N.
Kablov
,
I. L.
Svetlov
, and
N. V.
Petrushin
,
Materialovedenie (Mater. Sci.)
5
,
14
(
1997
) (in Russian).
43.
H.
Ri
,
E.
Kh. Ri
,
S. N.
Khimukhin
,
V. E.
Ri
,
T. S.
Zernova
, and
G. A.
Knyazev
,
Bull. Pac. State Univ.
2
(
29
),
137
(
2013
) (in Russian).
44.
G.
Sivkov
,
D.
Yagodin
,
S.
Kofanov
,
O.
Gornov
,
S.
Volodin
,
V.
Bykov
,
P.
Popel
,
V.
Sidorov
,
C.
Bao
,
M.
Calvo-Dahlborg
,
U.
Dahlborg
, and
D.
Sordelet
,
J. Non-Cryst. Solids
353
,
3274
(
2007
).
45.
L. W.
Ying
,
B.
Chen
, and
S. Z.
Dong
,
J. Non-Cryst. Solids
490
,
31
(
2018
).
46.
E. V.
Kolotukhin
,
S. P.
Avdyukhin
,
G. V.
Tyagunov
, and
V. N.
Larionov
,
Steel Transl.
9
,
115
(
1989
) (in Russian).
47.
R.
Fernander
,
I. C.
Lecomte
, and
T. Z.
Kattamis
,
Metall. Trans.
9
,
1381
(
1978
).
48.
B. A.
Baum
,
D. B.
Shulgin
, and
T. P.
Buhler
,
Phys. Met+
11
,
90
(
1989
) (in Russian).
49.
V. I.
Ladyanov
,
S. V.
Lagunov
, and
S. V.
Pakhomov
,
Rus. Metal+
5
,
20
(
1998
) (in Russian).
50.
M. G.
Vasin
,
V. I.
Ladyanov
, and
V. P.
Bovin
,
Rus. Metal+
5
,
27
(
2000
) (in Russian).
51.
E. V.
Kolotukhin
,
G. V.
Tyagunov
, and
B. A.
Baum
,
Russ. J. Phys. Chem. A
63
,
1118
(
1989
) (in Russian).
52.
W.
Oy
,
Z. J.
Changshuai
,
M.
Zou
,
L.
Liu
, and
H.
Fu
,
Acta Metall. Sin.
46
(
6
),
674
(
2010
).
53.
M. M.
Zou
,
J.
Zhang
,
L.
Liu
, and
H. Z.
Fu
,
Cailiao Kexue yu Gongyi
16
(
10
),
86
(
2008
).
54.
D. Y.
Hu
,
J.
Zhang
,
T. W.
Huang
,
Z. Q.
Jie
,
L.
Lydiaway
, and
H. Z.
Fu
,
Zhuzao
61
(
12
),
1388
(
2012
).
55.
M.
Zou
,
J.
Zhang
,
L.
Liu
, and
H.
Fu
,
Acta Metall. Sin.
44
(
2
),
150
(
2008
).
56.
H. Y.
Tong
and
F. G.
Shi
,
Appl. Phys. Lett.
70
(
7
),
841
(
1997
).
57.
D. E.
Kablov
,
E. B.
Chabina
,
V. V.
Sidorov
, and
P. G.
Min
,
Met. Sci. Heat Treat+
8
,
3
(
2013
) (in Russian).
58.
D. E.
Kablov
,
V. V.
Sidorov
,
V. V.
Gerasimov
,
V. N.
Simonov
, and
P. G.
Min
,
Sci. Educ.
2012
(
4
),
77-30569/377117
(
2012
), see http://technomag.edu.ru/doc/377117.html (in Russian).
59.
F.
Yin
,
X. F.
Sun
,
Y. B.
Li
,
Y.
Yu
,
Q. W.
Zheng
,
H. R.
Guan
, and
Z. Q.
Hu
,
Acta Metall. Sin.
39
(
1
),
75
(
2003
).
60.
Z.
Jie
,
J.
Zhang
,
T.
Huang
,
L.
Liu
, and
H.
Fu
,
J. Alloys Compd.
706
,
76
(
2017
).
61.
J.
Zhang
,
B.
Li
,
M. M.
Zou
,
C. S.
Wang
,
L.
Liu
, and
H. Z.
Fu
,
J. Alloys Compd.
484
,
753
(
2009
).
62.
V. V.
Klochikhin
,
O. V.
Gnatenko
, and
V. V.
Naumik
,
Foundry Technol. Equipment
3
,
35
(
2013
) (in Russian).
63.
H.
Su
,
H.
Wang
,
J.
Zhang
,
M.
Guo
,
L.
Liu
, and
H.
Fu
,
Metall. Mater. Trans. B
49
(
4
),
1537
(
2018
).
64.
Z.
Shi
,
S.
Liu
,
X.
Wang
,
X. D.
Yue
, and
J. R.
Li
,
Procedia Eng.
99
,
1415
(
2015
).
65.
M.
Zou
,
J.
Zhang
,
L.
Liu
, and
H.
Fu
,
Acta Metall. Sin.
44
(
2
),
155
(
2008
).
66.
L.
Liu
,
B. L.
Zhen
,
A.
Banerji
,
W.
Reif
, and
F.
Sommer
,
Scripta Metall. Mater.
30
(
5
),
593
(
1994
).
67.
C.
Wang
,
J.
Zhang
,
L.
Liu
, and
H.
Fu
,
J. Alloys Compd.
508
(
2
),
440
(
2010
).
68.
B.
Ge
,
L.
Lin
,
Z.
Jun
,
Y.
Li
,
H.
Fu
, and
X.
Liu
,
China Foundry
1
,
24
(
2013
).
69.
C.
Wang
,
J.
Zhang
,
L.
Liu
, and
H.
Fu
,
J. Mater. Sci. Technol.
27
(
7
),
668
(
2011
).
70.
M.
Zou
,
J.
Zhang
,
L.
Liu
, and
H.
Fu
,
Acta Metall. Sin.
44
(
1
),
59
(
2008
).
71.
M.
Zou
,
J.
Zhang
,
B.
Li
,
L.
Liu
, and
H.
Fu
,
Int. J. Mod. Phys. B
23
,
1105
(
2009
).
72.
F. S.
Yin
,
X. F.
Sun
,
J. G.
Li
,
H. R.
Guan
, and
Z. Q.
Hu
,
Scripta Mater.
48
(
4
),
425
(
2003
).
73.
M. M.
Zou
,
J.
Zhang
,
B.
Li
,
L. J.
Zhu
,
L.
Liu
, and
H. Z.
Fu
,
Adv. Mat. Res.
217–218
,
692
(
2011
).
74.
T. E.
Faber
and
J. M.
Ziman
,
Philos. Mag.
11
,
153
(
1965
).
75.
The Physics of Metals. Vol. 1 Electrons
, edited by
J. M.
Ziman
(
Cambridge University
,
New York
,
1969
).
76.
L. M.
Falicov
and
F.
Yndurain
,
Phys. Rev. B
12
,
5664
(
1975
).
77.
O.
Senninger
and
P. W.
Voorhees
,
Acta Mater.
116
,
308
(
2016
).
You do not currently have access to this content.